mirror of https://github.com/malarinv/tacotron2
train.py: renaming variable to n_gpus
parent
8300844fa7
commit
0ad65cc053
8
train.py
8
train.py
|
|
@ -28,10 +28,10 @@ def batchnorm_to_float(module):
|
|||
return module
|
||||
|
||||
|
||||
def reduce_tensor(tensor, num_gpus):
|
||||
def reduce_tensor(tensor, n_gpus):
|
||||
rt = tensor.clone()
|
||||
dist.all_reduce(rt, op=dist.reduce_op.SUM)
|
||||
rt /= num_gpus
|
||||
rt /= n_gpus
|
||||
return rt
|
||||
|
||||
|
||||
|
|
@ -135,7 +135,7 @@ def validate(model, criterion, valset, iteration, batch_size, n_gpus,
|
|||
y_pred = model(x)
|
||||
loss = criterion(y_pred, y)
|
||||
if distributed_run:
|
||||
reduced_val_loss = reduce_tensor(loss.data, num_gpus).item()
|
||||
reduced_val_loss = reduce_tensor(loss.data, n_gpus).item()
|
||||
else:
|
||||
reduced_val_loss = loss.item()
|
||||
val_loss += reduced_val_loss
|
||||
|
|
@ -212,7 +212,7 @@ def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus,
|
|||
|
||||
loss = criterion(y_pred, y)
|
||||
if hparams.distributed_run:
|
||||
reduced_loss = reduce_tensor(loss.data, num_gpus).item()
|
||||
reduced_loss = reduce_tensor(loss.data, n_gpus).item()
|
||||
else:
|
||||
reduced_loss = loss.item()
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue