2018-05-03 22:10:51 +00:00
|
|
|
# Tacotron 2 (without wavenet)
|
|
|
|
|
|
|
|
|
|
Tacotron 2 PyTorch implementation of [Natural TTS Synthesis By Conditioning
|
|
|
|
|
Wavenet On Mel Spectrogram Predictions](https://arxiv.org/pdf/1712.05884.pdf).
|
|
|
|
|
|
|
|
|
|
This implementation includes **distributed** and **fp16** support
|
|
|
|
|
and uses the [LJSpeech dataset](https://keithito.com/LJ-Speech-Dataset/).
|
|
|
|
|
|
|
|
|
|
Distributed and FP16 support relies on work by Christian Sarofeen and NVIDIA's
|
2018-05-03 22:15:04 +00:00
|
|
|
[Apex Library](https://github.com/nvidia/apex).
|
2018-05-03 22:10:51 +00:00
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## Pre-requisites
|
|
|
|
|
1. NVIDIA GPU + CUDA cuDNN
|
|
|
|
|
|
|
|
|
|
## Setup
|
|
|
|
|
1. Download and extract the [LJ Speech dataset](https://keithito.com/LJ-Speech-Dataset/)
|
|
|
|
|
2. Clone this repo: `git clone https://github.com/NVIDIA/tacotron2.git`
|
|
|
|
|
3. CD into this repo: `cd tacotron2`
|
2018-05-04 00:18:17 +00:00
|
|
|
4. Update .wav paths: `sed -i -- 's,DUMMY,ljs_dataset_folder/wavs,g' filelists/*.txt`
|
2018-05-03 22:10:51 +00:00
|
|
|
5. Install [pytorch 0.4](https://github.com/pytorch/pytorch)
|
|
|
|
|
6. Install python requirements or use docker container (tbd)
|
|
|
|
|
- Install python requirements: `pip install requirements.txt`
|
|
|
|
|
- **OR**
|
|
|
|
|
- Docker container `(tbd)`
|
|
|
|
|
|
|
|
|
|
## Training
|
|
|
|
|
1. `python train.py --output_directory=outdir --log_directory=logdir`
|
|
|
|
|
2. (OPTIONAL) `tensorboard --logdir=outdir/logdir`
|
|
|
|
|
|
|
|
|
|
## Multi-GPU (distributed) and FP16 Training
|
2018-05-04 16:09:24 +00:00
|
|
|
1. `python -m multiproc train.py --output_directory=outdir --log_directory=logdir --hparams=distributed_run=True,fp16_run=True`
|
2018-05-03 22:10:51 +00:00
|
|
|
|
|
|
|
|
## Inference
|
|
|
|
|
1. `jupyter notebook --ip=127.0.0.1 --port=31337`
|
|
|
|
|
2. load inference.ipynb
|
|
|
|
|
|
|
|
|
|
## Related repos
|
|
|
|
|
[nv-wavenet](https://github.com/NVIDIA/nv-wavenet/): Faster than real-time
|
|
|
|
|
wavenet inference
|
|
|
|
|
|
|
|
|
|
## Acknowledgements
|
2018-05-04 00:18:17 +00:00
|
|
|
This implementation uses code from the following repos: [Keith
|
|
|
|
|
Ito](https://github.com/keithito/tacotron/), [Prem
|
|
|
|
|
Seetharaman](https://github.com/pseeth/pytorch-stft) as described in our code.
|
2018-05-03 22:10:51 +00:00
|
|
|
|
2018-05-04 00:18:17 +00:00
|
|
|
We are inspired by [Ryuchi Yamamoto's](https://github.com/r9y9/tacotron_pytorch)
|
|
|
|
|
Tacotron PyTorch implementation.
|
|
|
|
|
|
|
|
|
|
We are thankful to the Tacotron 2 paper authors, specially Jonathan Shen, Yuxuan
|
|
|
|
|
Wang and Zongheng Yang.
|
2018-05-03 22:10:51 +00:00
|
|
|
|
|
|
|
|
|