import json from pathlib import Path from sklearn.model_selection import train_test_split from num2words import num2words def separate_space_convert_digit_setpath(): with Path("/home/malar/work/asr-data-utils/asr_data/pnr_data.json").open("r") as pf: pnr_jsonl = pf.readlines() pnr_data = [json.loads(i) for i in pnr_jsonl] new_pnr_data = [] for i in pnr_data: letters = " ".join(list(i["text"])) num_tokens = [num2words(c) if "0" <= c <= "9" else c for c in letters] i["text"] = ("".join(num_tokens)).lower() i["audio_filepath"] = i["audio_filepath"].replace( "pnr_data/", "/dataset/asr_data/pnr_data/wav/" ) new_pnr_data.append(i) new_pnr_jsonl = [json.dumps(i) for i in new_pnr_data] with Path("/dataset/asr_data/pnr_data/pnr_data.json").open("w") as pf: new_pnr_data = "\n".join(new_pnr_jsonl) # + "\n" pf.write(new_pnr_data) separate_space_convert_digit_setpath() def split_data(): with Path("/dataset/asr_data/pnr_data/pnr_data.json").open("r") as pf: pnr_jsonl = pf.readlines() train_pnr, test_pnr = train_test_split(pnr_jsonl, test_size=0.1) with Path("/dataset/asr_data/pnr_data/train_manifest.json").open("w") as pf: pnr_data = "".join(train_pnr) pf.write(pnr_data) with Path("/dataset/asr_data/pnr_data/test_manifest.json").open("w") as pf: pnr_data = "".join(test_pnr) pf.write(pnr_data) split_data() def augment_an4(): an4_train = Path("/dataset/asr_data/an4/train_manifest.json").read_bytes() an4_test = Path("/dataset/asr_data/an4/test_manifest.json").read_bytes() pnr_train = Path("/dataset/asr_data/pnr_data/train_manifest.json").read_bytes() pnr_test = Path("/dataset/asr_data/pnr_data/test_manifest.json").read_bytes() with Path("/dataset/asr_data/an4_pnr/train_manifest.json").open("wb") as pf: pf.write(an4_train + pnr_train) with Path("/dataset/asr_data/an4_pnr/test_manifest.json").open("wb") as pf: pf.write(an4_test + pnr_test) augment_an4() def validate_data(data_file): with Path(data_file).open("r") as pf: pnr_jsonl = pf.readlines() for (i, s) in enumerate(pnr_jsonl): try: json.loads(s) except BaseException as e: print(f"failed on {i}") validate_data("/dataset/asr_data/an4_pnr/test_manifest.json") validate_data("/dataset/asr_data/an4_pnr/train_manifest.json") # def convert_digits(data_file="/dataset/asr_data/an4_pnr/test_manifest.json"): # with Path(data_file).open("r") as pf: # pnr_jsonl = pf.readlines() # # pnr_data = [json.loads(i) for i in pnr_jsonl] # new_pnr_data = [] # for i in pnr_data: # num_tokens = [num2words(c) for c in i["text"] if "0" <= c <= "9"] # i["text"] = "".join(num_tokens) # new_pnr_data.append(i) # # new_pnr_jsonl = [json.dumps(i) for i in new_pnr_data] # # with Path(data_file).open("w") as pf: # new_pnr_data = "\n".join(new_pnr_jsonl) # + "\n" # pf.write(new_pnr_data) # # # convert_digits(data_file="/dataset/asr_data/an4_pnr/train_manifest.json")