import typer from itertools import chain from io import BytesIO from pathlib import Path import re app = typer.Typer() @app.command() def extract_data( call_audio_dir: Path = typer.Option(Path("/dataset/rev/wavs"), show_default=True), call_meta_dir: Path = typer.Option(Path("/dataset/rev/jsons"), show_default=True), output_dir: Path = typer.Option(Path("./data"), show_default=True), dataset_name: str = typer.Option("rev_transribed", show_default=True), verbose: bool = False, ): from pydub import AudioSegment from .utils import ExtendedPath, asr_data_writer, strip_silence from lenses import lens import datetime call_asr_data: Path = output_dir / Path("asr_data") call_asr_data.mkdir(exist_ok=True, parents=True) def wav_event_generator(call_audio_dir): for wav_path in call_audio_dir.glob("**/*.wav"): if verbose: typer.echo(f"loading events for file {wav_path}") call_wav = AudioSegment.from_file_using_temporary_files(wav_path) rel_meta_path = wav_path.with_suffix(".json").relative_to(call_audio_dir) meta_path = call_meta_dir / rel_meta_path if meta_path.exists(): events = ExtendedPath(meta_path).read_json() yield call_wav, wav_path, events else: if verbose: typer.echo(f"missing json corresponding to {wav_path}") def contains_asr(x): return "AsrResult" in x def channel(n): def filter_func(ev): return ( ev["AsrResult"]["Channel"] == n if "Channel" in ev["AsrResult"] else n == 0 ) return filter_func def time_to_msecs(time_str): return ( datetime.datetime.strptime(time_str, "%H:%M:%S,%f") - datetime.datetime(1900, 1, 1) ).total_seconds() * 1000 def process_utterance_chunk(wav_seg, start_time, end_time, monologue): # offset by 1sec left side to include vad? discarded audio full_tscript_wav_seg = wav_seg[ time_to_msecs(start_time) - 1000 : time_to_msecs(end_time) # + 1000 ] tscript_wav_seg = strip_silence(full_tscript_wav_seg) tscript_wav_fb = BytesIO() tscript_wav_seg.export(tscript_wav_fb, format="wav") tscript_wav = tscript_wav_fb.getvalue() text = "".join(lens["elements"].Each()["value"].collect()(monologue)) text_clean = re.sub(r"\[.*\]", "", text) return tscript_wav, tscript_wav_seg.duration_seconds, text_clean def dual_asr_data_generator(wav_seg, wav_path, meta): left_audio, right_audio = wav_seg.split_to_mono() channel_map = {"Agent": right_audio, "Client": left_audio} monologues = lens["monologues"].Each().collect()(meta) for monologue in monologues: # print(monologue["speaker_name"]) speaker_channel = channel_map.get(monologue["speaker_name"]) if not speaker_channel: if verbose: print( f'unknown speaker tag {monologue["speaker_name"]} in wav:{wav_path} skipping.' ) continue try: start_time = ( lens["elements"] .Each() .Filter(lambda x: "timestamp" in x)["timestamp"] .collect()(monologue)[0] ) end_time = ( lens["elements"] .Each() .Filter(lambda x: "end_timestamp" in x)["end_timestamp"] .collect()(monologue)[-1] ) except IndexError: if verbose: print( f"error when loading timestamp events in wav:{wav_path} skipping." ) continue tscript_wav, seg_dur, text_clean = process_utterance_chunk( speaker_channel, start_time, end_time, monologue ) if seg_dur < 0.5: if verbose: print( f'transcript chunk "{text_clean}" contains no audio in {wav_path} skipping.' ) continue yield text_clean, seg_dur, tscript_wav def mono_asr_data_generator(wav_seg, wav_path, meta): monologues = lens["monologues"].Each().collect()(meta) for monologue in monologues: try: start_time = ( lens["elements"] .Each() .Filter(lambda x: "timestamp" in x)["timestamp"] .collect()(monologue)[0] ) end_time = ( lens["elements"] .Each() .Filter(lambda x: "end_timestamp" in x)["end_timestamp"] .collect()(monologue)[-1] ) except IndexError: if verbose: print( f"error when loading timestamp events in wav:{wav_path} skipping." ) continue tscript_wav, seg_dur, text_clean = process_utterance_chunk( wav_seg, start_time, end_time, monologue ) if seg_dur < 0.5: if verbose: print( f'transcript chunk "{text_clean}" contains no audio in {wav_path} skipping.' ) continue yield text_clean, seg_dur, tscript_wav def generate_rev_asr_data(): full_asr_data = [] total_duration = 0 for wav, wav_path, ev in wav_event_generator(call_audio_dir): if wav.channels > 2: print(f"skipping many channel audio {wav_path}") asr_data_generator = ( mono_asr_data_generator if wav.channels == 1 else dual_asr_data_generator ) asr_data = asr_data_generator(wav, wav_path, ev) total_duration += wav.duration_seconds full_asr_data.append(asr_data) typer.echo(f"loaded {len(full_asr_data)} calls of duration {total_duration}s") n_dps = asr_data_writer(call_asr_data, dataset_name, chain(*full_asr_data)) typer.echo(f"written {n_dps} data points") generate_rev_asr_data() def main(): app() if __name__ == "__main__": main()