import typer from pathlib import Path from enum import Enum app = typer.Typer() @app.command() def export_all_logs( call_logs_file: Path = typer.Option(Path("./call_logs.yaml"), show_default=True), domain: str = typer.Option("sia-data.agaralabs.com", show_default=True), ): from .utils import get_mongo_conn from collections import defaultdict from ruamel.yaml import YAML yaml = YAML() mongo_coll = get_mongo_conn() caller_calls = defaultdict(lambda: []) for call in mongo_coll.find(): sysid = call["SystemID"] call_uri = f"http://{domain}/calls/{sysid}" caller = call["Caller"] caller_calls[caller].append(call_uri) caller_list = [] for caller in caller_calls: caller_list.append({"name": caller, "calls": caller_calls[caller]}) output_yaml = {"users": caller_list} typer.echo(f"exporting call logs to yaml file at {call_logs_file}") with call_logs_file.open("w") as yf: yaml.dump(output_yaml, yf) @app.command() def export_calls_between( start_cid: str, end_cid: str, call_logs_file: Path = typer.Option(Path("./call_logs.yaml"), show_default=True), domain: str = typer.Option("sia-data.agaralabs.com", show_default=True), mongo_port: int = 27017, ): from collections import defaultdict from ruamel.yaml import YAML from .utils import get_mongo_conn yaml = YAML() mongo_coll = get_mongo_conn(port=mongo_port) start_meta = mongo_coll.find_one({"SystemID": start_cid}) end_meta = mongo_coll.find_one({"SystemID": end_cid}) caller_calls = defaultdict(lambda: []) call_query = mongo_coll.find( { "StartTS": {"$gte": start_meta["StartTS"]}, "EndTS": {"$lte": end_meta["EndTS"]}, } ) for call in call_query: sysid = call["SystemID"] call_uri = f"http://{domain}/calls/{sysid}" caller = call["Caller"] caller_calls[caller].append(call_uri) caller_list = [] for caller in caller_calls: caller_list.append({"name": caller, "calls": caller_calls[caller]}) output_yaml = {"users": caller_list} typer.echo(f"exporting call logs to yaml file at {call_logs_file}") with call_logs_file.open("w") as yf: yaml.dump(output_yaml, yf) @app.command() def copy_metas( call_logs_file: Path = typer.Option(Path("./call_logs.yaml"), show_default=True), output_dir: Path = Path("./data"), meta_dir: Path = Path("/tmp/call_metas"), ): from lenses import lens from ruamel.yaml import YAML from urllib.parse import urlsplit from shutil import copy2 yaml = YAML() call_logs = yaml.load(call_logs_file.read_text()) call_meta_dir: Path = output_dir / Path("call_metas") call_meta_dir.mkdir(exist_ok=True, parents=True) meta_dir.mkdir(exist_ok=True, parents=True) def get_cid(uri): return Path(urlsplit(uri).path).stem def copy_meta(uri): cid = get_cid(uri) saved_meta_path = call_meta_dir / Path(f"{cid}.json") dest_meta_path = meta_dir / Path(f"{cid}.json") if not saved_meta_path.exists(): print(f"{saved_meta_path} not found") copy2(saved_meta_path, dest_meta_path) def download_meta_audio(): call_lens = lens["users"].Each()["calls"].Each() call_lens.modify(copy_meta)(call_logs) download_meta_audio() class ExtractionType(str, Enum): flow = "flow" data = "data" @app.command() def analyze( leaderboard: bool = False, plot_calls: bool = False, extract_data: bool = False, extraction_type: ExtractionType = typer.Option( ExtractionType.data, show_default=True ), start_delay: float = 1.5, download_only: bool = False, strip_silent_chunks: bool = True, call_logs_file: Path = typer.Option(Path("./call_logs.yaml"), show_default=True), output_dir: Path = Path("./data"), data_name: str = None, mongo_uri: str = typer.Option( "mongodb://localhost:27017/test.calls", show_default=True ), ): from urllib.parse import urlsplit from functools import reduce import boto3 from io import BytesIO import json from ruamel.yaml import YAML import re from google.protobuf.timestamp_pb2 import Timestamp from datetime import timedelta import librosa import librosa.display from lenses import lens from pprint import pprint import pandas as pd import matplotlib.pyplot as plt import matplotlib from tqdm import tqdm from .utils import ui_dump_manifest_writer, strip_silence, get_mongo_coll, get_call_logs from pydub import AudioSegment from natural.date import compress matplotlib.rcParams["agg.path.chunksize"] = 10000 matplotlib.use("agg") yaml = YAML() s3 = boto3.client("s3") mongo_collection = get_mongo_coll(mongo_uri) call_media_dir: Path = output_dir / Path("call_wavs") call_media_dir.mkdir(exist_ok=True, parents=True) call_meta_dir: Path = output_dir / Path("call_metas") call_meta_dir.mkdir(exist_ok=True, parents=True) call_plot_dir: Path = output_dir / Path("plots") call_plot_dir.mkdir(exist_ok=True, parents=True) call_asr_data: Path = output_dir / Path("asr_data") call_asr_data.mkdir(exist_ok=True, parents=True) dataset_name = call_logs_file.stem if not data_name else data_name call_logs = yaml.load(call_logs_file.read_text()) def gen_ev_fev_timedelta(fev): fev_p = Timestamp() fev_p.FromJsonString(fev["CreatedTS"]) fev_dt = fev_p.ToDatetime() td_0 = timedelta() def get_timedelta(ev): ev_p = Timestamp() ev_p.FromJsonString(value=ev["CreatedTS"]) ev_dt = ev_p.ToDatetime() delta = ev_dt - fev_dt return delta if delta > td_0 else td_0 return get_timedelta def chunk_n(evs, n): return [evs[i * n : (i + 1) * n] for i in range((len(evs) + n - 1) // n)] if extraction_type == ExtractionType.data: def is_utter_event(ev): return ( (ev["Author"] == "CONV" or ev["Author"] == "ASR") and (ev["Type"] != "DEBUG") and ev["Type"] != "ASR_RESULT" ) def get_data_points(utter_events, td_fn): data_points = [] for evs in chunk_n(utter_events, 3): try: assert evs[0]["Type"] == "CONV_RESULT" assert evs[1]["Type"] == "STARTED_SPEAKING" assert evs[2]["Type"] == "STOPPED_SPEAKING" start_time = td_fn(evs[1]).total_seconds() - start_delay end_time = td_fn(evs[2]).total_seconds() spoken = evs[0]["Msg"] data_points.append( {"start_time": start_time, "end_time": end_time, "code": spoken} ) except AssertionError: # skipping invalid data_points pass return data_points def text_extractor(spoken): return ( re.search(r"'(.*)'", spoken).groups(0)[0] if len(spoken) > 6 and re.search(r"'(.*)'", spoken) else spoken ) elif extraction_type == ExtractionType.flow: def is_final_asr_event_or_spoken(ev): pld = json.loads(ev["Payload"]) return ( pld["AsrResult"]["Results"][0]["IsFinal"] if ev["Type"] == "ASR_RESULT" else True ) def is_utter_event(ev): return ( ev["Author"] == "CONV" or (ev["Author"] == "ASR" and is_final_asr_event_or_spoken(ev)) ) and (ev["Type"] != "DEBUG") def get_data_points(utter_events, td_fn): data_points = [] for evs in chunk_n(utter_events, 4): try: assert len(evs) == 4 assert evs[0]["Type"] == "CONV_RESULT" assert evs[1]["Type"] == "STARTED_SPEAKING" assert evs[2]["Type"] == "ASR_RESULT" assert evs[3]["Type"] == "STOPPED_SPEAKING" start_time = td_fn(evs[1]).total_seconds() - start_delay end_time = td_fn(evs[2]).total_seconds() conv_msg = evs[0]["Msg"] if "full name" in conv_msg.lower(): pld = json.loads(evs[2]["Payload"]) spoken = pld["AsrResult"]["Results"][0]["Alternatives"][0][ "Transcript" ] data_points.append( { "start_time": start_time, "end_time": end_time, "code": spoken, } ) except AssertionError: # skipping invalid data_points pass return data_points def text_extractor(spoken): return spoken def process_call(call_obj): call_meta = get_call_logs(call_obj, s3, call_meta_dir) call_events = call_meta["Events"] def is_writer_uri_event(ev): return ev["Author"] == "AUDIO_WRITER" and "s3://" in ev["Msg"] writer_events = list(filter(is_writer_uri_event, call_events)) s3_wav_url = re.search(r"(s3://.*)", writer_events[0]["Msg"]).groups(0)[0] s3_wav_url_p = urlsplit(s3_wav_url) def is_first_audio_ev(state, ev): if state[0]: return state else: return (ev["Author"] == "GATEWAY" and ev["Type"] == "AUDIO", ev) (_, first_audio_ev) = reduce(is_first_audio_ev, call_events, (False, {})) get_ev_fev_timedelta = gen_ev_fev_timedelta(first_audio_ev) uevs = list(filter(is_utter_event, call_events)) ev_count = len(uevs) utter_events = uevs[: ev_count - ev_count % 3] saved_wav_path = call_media_dir / Path(Path(s3_wav_url_p.path).name) if not saved_wav_path.exists(): print(f"downloading : {saved_wav_path} from {s3_wav_url}") s3.download_file( s3_wav_url_p.netloc, s3_wav_url_p.path[1:], str(saved_wav_path) ) return { "wav_path": saved_wav_path, "num_samples": len(utter_events) // 3, "meta": call_obj, "first_event_fn": get_ev_fev_timedelta, "utter_events": utter_events, } def get_cid(uri): return Path(urlsplit(uri).path).stem def ensure_call(uri): cid = get_cid(uri) meta = mongo_collection.find_one({"SystemID": cid}) process_meta = process_call(meta) return process_meta def retrieve_processed_callmeta(uri): cid = get_cid(uri) meta = mongo_collection.find_one({"SystemID": cid}) duration = meta["EndTS"] - meta["StartTS"] process_meta = process_call(meta) data_points = get_data_points( process_meta["utter_events"], process_meta["first_event_fn"] ) process_meta["data_points"] = data_points return {"url": uri, "meta": meta, "duration": duration, "process": process_meta} def retrieve_callmeta(call_uri): uri = call_uri["call_uri"] name = call_uri["name"] cid = get_cid(uri) meta = mongo_collection.find_one({"SystemID": cid}) duration = meta["EndTS"] - meta["StartTS"] process_meta = process_call(meta) data_points = get_data_points( process_meta["utter_events"], process_meta["first_event_fn"] ) process_meta["data_points"] = data_points return { "url": uri, "name": name, "meta": meta, "duration": duration, "process": process_meta, } def download_meta_audio(): call_lens = lens["users"].Each()["calls"].Each() call_lens.modify(ensure_call)(call_logs) def plot_calls_data(): def plot_data_points(y, sr, data_points, file_path): plt.figure(figsize=(16, 12)) librosa.display.waveplot(y=y, sr=sr) for dp in data_points: start, end, code = dp["start_time"], dp["end_time"], dp["code"] plt.axvspan(start, end, color="green", alpha=0.2) text_pos = (start + end) / 2 plt.text( text_pos, 0.25, f"{code}", rotation=90, horizontalalignment="center", verticalalignment="center", ) plt.title("Datapoints") plt.savefig(file_path, format="png") return file_path def plot_call(call_obj): saved_wav_path, data_points, sys_id = ( call_obj["process"]["wav_path"], call_obj["process"]["data_points"], call_obj["meta"]["SystemID"], ) file_path = call_plot_dir / Path(sys_id).with_suffix(".png") if not file_path.exists(): print(f"plotting: {file_path}") (y, sr) = librosa.load(saved_wav_path) plot_data_points(y, sr, data_points, str(file_path)) return file_path call_lens = lens["users"].Each()["calls"].Each() call_stats = call_lens.modify(retrieve_processed_callmeta)(call_logs) # call_plot_data = call_lens.collect()(call_stats) call_plots = call_lens.modify(plot_call)(call_stats) # with ThreadPoolExecutor(max_workers=20) as exe: # print('starting all plot tasks') # responses = [exe.submit(plot_call, w) for w in call_plot_data] # print('submitted all plot tasks') # call_plots = [r.result() for r in responses] pprint(call_plots) def extract_data_points(): if strip_silent_chunks: def audio_process(seg): return strip_silence(seg) else: def audio_process(seg): return seg def gen_data_values(saved_wav_path, data_points, caller_name): call_seg = ( AudioSegment.from_wav(saved_wav_path) .set_channels(1) .set_sample_width(2) .set_frame_rate(24000) ) for dp_id, dp in enumerate(data_points): start, end, spoken = dp["start_time"], dp["end_time"], dp["code"] spoken_seg = audio_process(call_seg[start * 1000 : end * 1000]) spoken_fb = BytesIO() spoken_seg.export(spoken_fb, format="wav") spoken_wav = spoken_fb.getvalue() # search for actual pnr code and handle plain codes as well extracted_code = text_extractor(spoken) if strip_silent_chunks and spoken_seg.duration_seconds < 0.5: print(f'transcript chunk "{spoken}" contains no audio skipping.') continue yield extracted_code, spoken_seg.duration_seconds, spoken_wav, caller_name, spoken_seg call_lens = lens["users"].Each()["calls"].Each() def assign_user_call(uc): return ( lens["calls"] .Each() .modify(lambda c: {"call_uri": c, "name": uc["name"]})(uc) ) user_call_logs = lens["users"].Each().modify(assign_user_call)(call_logs) call_stats = call_lens.modify(retrieve_callmeta)(user_call_logs) call_objs = call_lens.collect()(call_stats) def data_source(): for call_obj in tqdm(call_objs): saved_wav_path, data_points, name = ( call_obj["process"]["wav_path"], call_obj["process"]["data_points"], call_obj["name"], ) for dp in gen_data_values(saved_wav_path, data_points, name): yield dp ui_dump_manifest_writer(call_asr_data, dataset_name, data_source()) def show_leaderboard(): def compute_user_stats(call_stat): n_samples = ( lens["calls"].Each()["process"]["num_samples"].get_monoid()(call_stat) ) n_duration = lens["calls"].Each()["duration"].get_monoid()(call_stat) return { "num_samples": n_samples, "duration": n_duration.total_seconds(), "samples_rate": n_samples / n_duration.total_seconds(), "duration_str": compress(n_duration, pad=" "), "name": call_stat["name"], } call_lens = lens["users"].Each()["calls"].Each() call_stats = call_lens.modify(retrieve_processed_callmeta)(call_logs) user_stats = lens["users"].Each().modify(compute_user_stats)(call_stats) leader_df = ( pd.DataFrame(user_stats["users"]) .sort_values(by=["duration"], ascending=False) .reset_index(drop=True) ) leader_df["rank"] = leader_df.index + 1 leader_board = leader_df.rename( columns={ "rank": "Rank", "num_samples": "Count", "name": "Name", "samples_rate": "SpeechRate", "duration_str": "Duration", } )[["Rank", "Name", "Count", "Duration"]] print( """ASR Dataset Leaderboard : ---------------------------------""" ) print(leader_board.to_string(index=False)) if download_only: download_meta_audio() return if leaderboard: show_leaderboard() if plot_calls: plot_calls_data() if extract_data: extract_data_points() def main(): app() if __name__ == "__main__": main()