1. integrated data generator using google tts

2. added training script
Malar Kannan 2020-04-08 17:26:27 +05:30
parent f7ebd8e90a
commit d22a99a4f6
10 changed files with 668 additions and 1 deletions

View File

@ -0,0 +1 @@

View File

@ -0,0 +1,65 @@
# import io
# import sys
# import json
import argparse
import logging
from pathlib import Path
from .utils import random_pnr_generator, manifest_str
from .tts.googletts import GoogleTTS
from tqdm import tqdm
import random
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
def generate_asr_data(output_dir, count):
google_voices = GoogleTTS.voice_list()
gtts = GoogleTTS()
wav_dir = output_dir / Path("pnr_data")
wav_dir.mkdir(parents=True, exist_ok=True)
asr_manifest = output_dir / Path("pnr_data").with_suffix(".json")
with asr_manifest.open("w") as mf:
for pnr_code in tqdm(random_pnr_generator(count)):
tts_code = (
f'<speak><say-as interpret-as="verbatim">{pnr_code}</say-as></speak>'
)
param = random.choice(google_voices)
param["sample_rate"] = 24000
param["num_channels"] = 1
wav_data = gtts.text_to_speech(text=tts_code, params=param)
audio_dur = len(wav_data[44:]) / (2 * 24000)
pnr_af = wav_dir / Path(pnr_code).with_suffix(".wav")
pnr_af.write_bytes(wav_data)
rel_pnr_path = pnr_af.relative_to(output_dir)
manifest = manifest_str(str(rel_pnr_path), audio_dur, pnr_code)
mf.write(manifest)
def arg_parser():
prog = Path(__file__).stem
parser = argparse.ArgumentParser(
prog=prog, description=f"generates asr training data"
)
parser.add_argument(
"--output_dir",
type=Path,
default=Path("./train/asr_data"),
help="directory to output asr data",
)
parser.add_argument(
"--count", type=int, default=3, help="number of datapoints to generate"
)
return parser
def main():
parser = arg_parser()
args = parser.parse_args()
generate_asr_data(**vars(args))
if __name__ == "__main__":
main()

View File

@ -0,0 +1,30 @@
import concurrent.futures
import urllib.request
URLS = [
"http://www.foxnews.com/",
"http://www.cnn.com/",
"http://europe.wsj.com/",
"http://www.bbc.co.uk/",
"http://some-made-up-domain.com/",
]
# Retrieve a single page and report the URL and contents
def load_url(url, timeout):
with urllib.request.urlopen(url, timeout=timeout) as conn:
return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
# Start the load operations and mark each future with its URL
future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
for future in concurrent.futures.as_completed(future_to_url):
url = future_to_url[future]
try:
data = future.result()
except Exception as exc:
print("%r generated an exception: %s" % (url, exc))
else:
print("%r page is %d bytes" % (url, len(data)))

View File

@ -0,0 +1,95 @@
import json
from pathlib import Path
from sklearn.model_selection import train_test_split
from num2words import num2words
def separate_space_convert_digit_setpath():
with Path("/home/malar/work/asr-data-utils/asr_data/pnr_data.json").open("r") as pf:
pnr_jsonl = pf.readlines()
pnr_data = [json.loads(i) for i in pnr_jsonl]
new_pnr_data = []
for i in pnr_data:
letters = " ".join(list(i["text"]))
num_tokens = [num2words(c) if "0" <= c <= "9" else c for c in letters]
i["text"] = ("".join(num_tokens)).lower()
i["audio_filepath"] = i["audio_filepath"].replace(
"pnr_data/", "/dataset/asr_data/pnr_data/wav/"
)
new_pnr_data.append(i)
new_pnr_jsonl = [json.dumps(i) for i in new_pnr_data]
with Path("/dataset/asr_data/pnr_data/pnr_data.json").open("w") as pf:
new_pnr_data = "\n".join(new_pnr_jsonl) # + "\n"
pf.write(new_pnr_data)
separate_space_convert_digit_setpath()
def split_data():
with Path("/dataset/asr_data/pnr_data/pnr_data.json").open("r") as pf:
pnr_jsonl = pf.readlines()
train_pnr, test_pnr = train_test_split(pnr_jsonl, test_size=0.1)
with Path("/dataset/asr_data/pnr_data/train_manifest.json").open("w") as pf:
pnr_data = "".join(train_pnr)
pf.write(pnr_data)
with Path("/dataset/asr_data/pnr_data/test_manifest.json").open("w") as pf:
pnr_data = "".join(test_pnr)
pf.write(pnr_data)
split_data()
def augment_an4():
an4_train = Path("/dataset/asr_data/an4/train_manifest.json").read_bytes()
an4_test = Path("/dataset/asr_data/an4/test_manifest.json").read_bytes()
pnr_train = Path("/dataset/asr_data/pnr_data/train_manifest.json").read_bytes()
pnr_test = Path("/dataset/asr_data/pnr_data/test_manifest.json").read_bytes()
with Path("/dataset/asr_data/an4_pnr/train_manifest.json").open("wb") as pf:
pf.write(an4_train + pnr_train)
with Path("/dataset/asr_data/an4_pnr/test_manifest.json").open("wb") as pf:
pf.write(an4_test + pnr_test)
augment_an4()
def validate_data(data_file):
with Path(data_file).open("r") as pf:
pnr_jsonl = pf.readlines()
for (i, s) in enumerate(pnr_jsonl):
try:
json.loads(s)
except BaseException as e:
print(f"failed on {i}")
validate_data("/dataset/asr_data/an4_pnr/test_manifest.json")
validate_data("/dataset/asr_data/an4_pnr/train_manifest.json")
# def convert_digits(data_file="/dataset/asr_data/an4_pnr/test_manifest.json"):
# with Path(data_file).open("r") as pf:
# pnr_jsonl = pf.readlines()
#
# pnr_data = [json.loads(i) for i in pnr_jsonl]
# new_pnr_data = []
# for i in pnr_data:
# num_tokens = [num2words(c) for c in i["text"] if "0" <= c <= "9"]
# i["text"] = "".join(num_tokens)
# new_pnr_data.append(i)
#
# new_pnr_jsonl = [json.dumps(i) for i in new_pnr_data]
#
# with Path(data_file).open("w") as pf:
# new_pnr_data = "\n".join(new_pnr_jsonl) # + "\n"
# pf.write(new_pnr_data)
#
#
# convert_digits(data_file="/dataset/asr_data/an4_pnr/train_manifest.json")

View File

View File

@ -0,0 +1,52 @@
from logging import getLogger
from google.cloud import texttospeech
LOGGER = getLogger("googletts")
class GoogleTTS(object):
def __init__(self):
self.client = texttospeech.TextToSpeechClient()
def text_to_speech(self, text: str, params: dict) -> bytes:
tts_input = texttospeech.types.SynthesisInput(ssml=text)
voice = texttospeech.types.VoiceSelectionParams(
language_code=params["language"], name=params["name"]
)
audio_config = texttospeech.types.AudioConfig(
audio_encoding=texttospeech.enums.AudioEncoding.LINEAR16,
sample_rate_hertz=params["sample_rate"],
)
response = self.client.synthesize_speech(tts_input, voice, audio_config)
audio_content = response.audio_content
return audio_content
@classmethod
def voice_list(cls):
"""Lists the available voices."""
client = cls().client
# Performs the list voices request
voices = client.list_voices()
results = []
for voice in voices.voices:
supported_eng_langs = [
lang for lang in voice.language_codes if lang[:2] == "en"
]
if len(supported_eng_langs) > 0:
lang = ",".join(supported_eng_langs)
else:
continue
ssml_gender = texttospeech.enums.SsmlVoiceGender(voice.ssml_gender)
results.append(
{
"name": voice.name,
"language": lang,
"gender": ssml_gender.name,
"engine": "wavenet" if "Wav" in voice.name else "standard",
"sample_rate": voice.natural_sample_rate_hertz,
}
)
return results

View File

@ -0,0 +1,26 @@
"""
TTSClient Abstract Class
"""
from abc import ABC, abstractmethod
class TTSClient(ABC):
"""
Base class for TTS
"""
@abstractmethod
def text_to_speech(self, text: str, num_channels: int, sample_rate: int,
audio_encoding) -> bytes:
"""
convert text to bytes
Arguments:
text {[type]} -- text to convert
channel {[type]} -- output audio bytes channel setting
width {[type]} -- width of audio bytes
rate {[type]} -- rare for audio bytes
Returns:
[type] -- [description]
"""

View File

@ -0,0 +1,47 @@
import numpy as np
import wave
import io
import json
def manifest_str(path, dur, text):
return (
json.dumps({"audio_filepath": path, "duration": round(dur, 1), "text": text})
+ "\n"
)
def wav_bytes(audio_bytes, frame_rate=24000):
wf_b = io.BytesIO()
with wave.open(wf_b, mode="w") as wf:
wf.setnchannels(1)
wf.setframerate(frame_rate)
wf.setsampwidth(2)
wf.writeframesraw(audio_bytes)
return wf_b.getvalue()
def random_pnr_generator(count=10000):
LENGTH = 3
# alphabet = list("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ")
alphabet = list("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
numeric = list("0123456789")
np_alphabet = np.array(alphabet, dtype="|S1")
np_numeric = np.array(numeric, dtype="|S1")
np_alpha_codes = np.random.choice(np_alphabet, [count, LENGTH])
np_num_codes = np.random.choice(np_numeric, [count, LENGTH])
np_code_seed = np.concatenate((np_alpha_codes, np_num_codes), axis=1).T
np.random.shuffle(np_code_seed)
np_codes = np_code_seed.T
codes = [(b"".join(np_codes[i])).decode("utf-8") for i in range(len(np_codes))]
return codes
def main():
for c in random_pnr_generator():
print(c)
if __name__ == "__main__":
main()

339
jasper/train.py Normal file
View File

@ -0,0 +1,339 @@
# Copyright (c) 2019 NVIDIA Corporation
import argparse
import copy
import math
import os
from functools import partial
from ruamel.yaml import YAML
import nemo
import nemo.collections.asr as nemo_asr
import nemo.utils.argparse as nm_argparse
from nemo.collections.asr.helpers import (
monitor_asr_train_progress,
process_evaluation_batch,
process_evaluation_epoch,
)
from nemo.utils.lr_policies import CosineAnnealing
logging = nemo.logging
def parse_args():
parser = argparse.ArgumentParser(
parents=[nm_argparse.NemoArgParser()],
description="Jasper",
conflict_handler="resolve",
)
parser.set_defaults(
checkpoint_dir=None,
optimizer="novograd",
batch_size=64,
eval_batch_size=64,
lr=0.002,
amp_opt_level="O1",
create_tb_writer=True,
model_config="./train/jasper10x5dr.yaml",
train_dataset="./train/asr_data/train_manifest.json",
eval_datasets="./train/asr_data/test_manifest.json",
work_dir="./train/work",
num_epochs=50,
weight_decay=0.005,
checkpoint_save_freq=1000,
eval_freq=100,
load_dir="./train/models/jasper/",
warmup_steps=3,
exp_name='jasper-speller'
)
# Overwrite default args
parser.add_argument(
"--max_steps",
type=int,
default=None,
required=False,
help="max number of steps to train",
)
parser.add_argument(
"--num_epochs",
type=int,
default=None,
required=False,
help="number of epochs to train",
)
parser.add_argument(
"--model_config",
type=str,
required=False,
help="model configuration file: model.yaml",
)
# Create new args
parser.add_argument("--exp_name", default="Jasper", type=str)
parser.add_argument("--beta1", default=0.95, type=float)
parser.add_argument("--beta2", default=0.25, type=float)
parser.add_argument("--warmup_steps", default=0, type=int)
parser.add_argument(
"--load_dir",
default=None,
type=str,
help="directory with pre-trained checkpoint",
)
args = parser.parse_args()
if args.max_steps is not None and args.num_epochs is not None:
raise ValueError("Either max_steps or num_epochs should be provided.")
return args
def construct_name(
name, lr, batch_size, max_steps, num_epochs, wd, optimizer, iter_per_step
):
if max_steps is not None:
return "{0}-lr_{1}-bs_{2}-s_{3}-wd_{4}-opt_{5}-ips_{6}".format(
name, lr, batch_size, max_steps, wd, optimizer, iter_per_step
)
else:
return "{0}-lr_{1}-bs_{2}-e_{3}-wd_{4}-opt_{5}-ips_{6}".format(
name, lr, batch_size, num_epochs, wd, optimizer, iter_per_step
)
def create_all_dags(args, neural_factory):
yaml = YAML(typ="safe")
with open(args.model_config) as f:
jasper_params = yaml.load(f)
vocab = jasper_params["labels"]
sample_rate = jasper_params["sample_rate"]
# Calculate num_workers for dataloader
total_cpus = os.cpu_count()
cpu_per_traindl = max(int(total_cpus / neural_factory.world_size), 1)
# perturb_config = jasper_params.get('perturb', None)
train_dl_params = copy.deepcopy(jasper_params["AudioToTextDataLayer"])
train_dl_params.update(jasper_params["AudioToTextDataLayer"]["train"])
del train_dl_params["train"]
del train_dl_params["eval"]
# del train_dl_params["normalize_transcripts"]
data_layer = nemo_asr.AudioToTextDataLayer(
manifest_filepath=args.train_dataset,
sample_rate=sample_rate,
labels=vocab,
batch_size=args.batch_size,
num_workers=cpu_per_traindl,
**train_dl_params,
# normalize_transcripts=False
)
N = len(data_layer)
steps_per_epoch = math.ceil(
N / (args.batch_size * args.iter_per_step * args.num_gpus)
)
logging.info("Have {0} examples to train on.".format(N))
data_preprocessor = nemo_asr.AudioToMelSpectrogramPreprocessor(
sample_rate=sample_rate, **jasper_params["AudioToMelSpectrogramPreprocessor"]
)
multiply_batch_config = jasper_params.get("MultiplyBatch", None)
if multiply_batch_config:
multiply_batch = nemo_asr.MultiplyBatch(**multiply_batch_config)
spectr_augment_config = jasper_params.get("SpectrogramAugmentation", None)
if spectr_augment_config:
data_spectr_augmentation = nemo_asr.SpectrogramAugmentation(
**spectr_augment_config
)
eval_dl_params = copy.deepcopy(jasper_params["AudioToTextDataLayer"])
eval_dl_params.update(jasper_params["AudioToTextDataLayer"]["eval"])
del eval_dl_params["train"]
del eval_dl_params["eval"]
data_layers_eval = []
if args.eval_datasets:
for eval_datasets in args.eval_datasets:
data_layer_eval = nemo_asr.AudioToTextDataLayer(
manifest_filepath=eval_datasets,
sample_rate=sample_rate,
labels=vocab,
batch_size=args.eval_batch_size,
num_workers=cpu_per_traindl,
**eval_dl_params,
)
data_layers_eval.append(data_layer_eval)
else:
logging.warning("There were no val datasets passed")
jasper_encoder = nemo_asr.JasperEncoder(
feat_in=jasper_params["AudioToMelSpectrogramPreprocessor"]["features"],
**jasper_params["JasperEncoder"],
)
jasper_decoder = nemo_asr.JasperDecoderForCTC(
feat_in=jasper_params["JasperEncoder"]["jasper"][-1]["filters"],
num_classes=len(vocab),
)
ctc_loss = nemo_asr.CTCLossNM(num_classes=len(vocab))
greedy_decoder = nemo_asr.GreedyCTCDecoder()
logging.info("================================")
logging.info(f"Number of parameters in encoder: {jasper_encoder.num_weights}")
logging.info(f"Number of parameters in decoder: {jasper_decoder.num_weights}")
logging.info(
f"Total number of parameters in model: "
f"{jasper_decoder.num_weights + jasper_encoder.num_weights}"
)
logging.info("================================")
# Train DAG
(audio_signal_t, a_sig_length_t, transcript_t, transcript_len_t) = data_layer()
processed_signal_t, p_length_t = data_preprocessor(
input_signal=audio_signal_t, length=a_sig_length_t
)
if multiply_batch_config:
(
processed_signal_t,
p_length_t,
transcript_t,
transcript_len_t,
) = multiply_batch(
in_x=processed_signal_t,
in_x_len=p_length_t,
in_y=transcript_t,
in_y_len=transcript_len_t,
)
if spectr_augment_config:
processed_signal_t = data_spectr_augmentation(input_spec=processed_signal_t)
encoded_t, encoded_len_t = jasper_encoder(
audio_signal=processed_signal_t, length=p_length_t
)
log_probs_t = jasper_decoder(encoder_output=encoded_t)
predictions_t = greedy_decoder(log_probs=log_probs_t)
loss_t = ctc_loss(
log_probs=log_probs_t,
targets=transcript_t,
input_length=encoded_len_t,
target_length=transcript_len_t,
)
# Callbacks needed to print info to console and Tensorboard
train_callback = nemo.core.SimpleLossLoggerCallback(
tensors=[loss_t, predictions_t, transcript_t, transcript_len_t],
print_func=partial(monitor_asr_train_progress, labels=vocab),
get_tb_values=lambda x: [("loss", x[0])],
tb_writer=neural_factory.tb_writer,
)
chpt_callback = nemo.core.CheckpointCallback(
folder=neural_factory.checkpoint_dir,
load_from_folder=args.load_dir,
step_freq=args.checkpoint_save_freq,
)
callbacks = [train_callback, chpt_callback]
# assemble eval DAGs
for i, eval_dl in enumerate(data_layers_eval):
(audio_signal_e, a_sig_length_e, transcript_e, transcript_len_e) = eval_dl()
processed_signal_e, p_length_e = data_preprocessor(
input_signal=audio_signal_e, length=a_sig_length_e
)
encoded_e, encoded_len_e = jasper_encoder(
audio_signal=processed_signal_e, length=p_length_e
)
log_probs_e = jasper_decoder(encoder_output=encoded_e)
predictions_e = greedy_decoder(log_probs=log_probs_e)
loss_e = ctc_loss(
log_probs=log_probs_e,
targets=transcript_e,
input_length=encoded_len_e,
target_length=transcript_len_e,
)
# create corresponding eval callback
tagname = os.path.basename(args.eval_datasets[i]).split(".")[0]
eval_callback = nemo.core.EvaluatorCallback(
eval_tensors=[loss_e, predictions_e, transcript_e, transcript_len_e],
user_iter_callback=partial(process_evaluation_batch, labels=vocab),
user_epochs_done_callback=partial(process_evaluation_epoch, tag=tagname),
eval_step=args.eval_freq,
tb_writer=neural_factory.tb_writer,
)
callbacks.append(eval_callback)
return loss_t, callbacks, steps_per_epoch
def main():
args = parse_args()
name = construct_name(
args.exp_name,
args.lr,
args.batch_size,
args.max_steps,
args.num_epochs,
args.weight_decay,
args.optimizer,
args.iter_per_step,
)
log_dir = name
if args.work_dir:
log_dir = os.path.join(args.work_dir, name)
# instantiate Neural Factory with supported backend
neural_factory = nemo.core.NeuralModuleFactory(
backend=nemo.core.Backend.PyTorch,
local_rank=args.local_rank,
optimization_level=args.amp_opt_level,
log_dir=log_dir,
checkpoint_dir=args.checkpoint_dir,
create_tb_writer=args.create_tb_writer,
files_to_copy=[args.model_config, __file__],
cudnn_benchmark=args.cudnn_benchmark,
tensorboard_dir=args.tensorboard_dir,
)
args.num_gpus = neural_factory.world_size
checkpoint_dir = neural_factory.checkpoint_dir
if args.local_rank is not None:
logging.info("Doing ALL GPU")
# build dags
train_loss, callbacks, steps_per_epoch = create_all_dags(args, neural_factory)
# train model
neural_factory.train(
tensors_to_optimize=[train_loss],
callbacks=callbacks,
lr_policy=CosineAnnealing(
args.max_steps
if args.max_steps is not None
else args.num_epochs * steps_per_epoch,
warmup_steps=args.warmup_steps,
),
optimizer=args.optimizer,
optimization_params={
"num_epochs": args.num_epochs,
"max_steps": args.max_steps,
"lr": args.lr,
"betas": (args.beta1, args.beta2),
"weight_decay": args.weight_decay,
"grad_norm_clip": None,
},
batches_per_step=args.iter_per_step,
)
if __name__ == "__main__":
main()

View File

@ -5,7 +5,17 @@ requirements = [
"nemo_toolkit[asr] @ git+https://github.com/NVIDIA/NeMo.git@09e3ba4dfe333f86d6c5c1048e07210924294be9#egg=nemo_toolkit", "nemo_toolkit[asr] @ git+https://github.com/NVIDIA/NeMo.git@09e3ba4dfe333f86d6c5c1048e07210924294be9#egg=nemo_toolkit",
] ]
extra_requirements = {"server": ["rpyc==4.1.4"]} extra_requirements = {
"server": ["rpyc~=4.1.4"],
"data": [
"google-cloud-texttospeech~=1.0.1",
"tqdm~=4.39.0",
"pydub~=0.23.1",
"scikit_learn~=0.22.1",
"pandas~=1.0.3",
"boto3~=1.12.35",
],
}
setup( setup(
name="jasper-asr", name="jasper-asr",
@ -22,6 +32,8 @@ setup(
"console_scripts": [ "console_scripts": [
"jasper_transcribe = jasper.transcribe:main", "jasper_transcribe = jasper.transcribe:main",
"jasper_asr_rpyc_server = jasper.server:main", "jasper_asr_rpyc_server = jasper.server:main",
"jasper_asr_trainer = jasper.train:main",
"jasper_asr_data_generate = jasper.data_utils.generator:main",
] ]
}, },
zip_safe=False, zip_safe=False,