1. added support for mono/dual channel rev transcripts

2. handle errors when extracting datapoints from rev meta data
3. added suport for annotation only task when dumping ui data
Malar Kannan 2020-05-27 15:19:25 +05:30
parent 1f2bedc156
commit 1acf9e403c
4 changed files with 86 additions and 34 deletions

View File

@ -88,7 +88,7 @@ def extract_data(
- datetime.datetime(1900, 1, 1)
).total_seconds() * 1000
def asr_data_generator(wav_seg, wav_path, meta):
def dual_asr_data_generator(wav_seg, wav_path, meta):
left_audio, right_audio = wav_seg.split_to_mono()
channel_map = {"Agent": right_audio, "Client": left_audio}
monologues = lens["monologues"].Each().collect()(meta)
@ -113,6 +113,7 @@ def extract_data(
)
except IndexError:
print(f'error when loading timestamp events in wav:{wav_path} skipping.')
continue
# offset by 500 msec to include first vad? discarded audio
full_tscript_wav_seg = speaker_channel[time_to_msecs(start_time) - 500 : time_to_msecs(end_time)]
@ -124,10 +125,43 @@ def extract_data(
text_clean = re.sub(r"\[.*\]", "", text)
yield text_clean, tscript_wav_seg.duration_seconds, tscript_wav
def mono_asr_data_generator(wav_seg, wav_path, meta):
monologues = lens["monologues"].Each().collect()(meta)
for monologue in monologues:
try:
start_time = (
lens["elements"]
.Each()
.Filter(lambda x: "timestamp" in x)["timestamp"]
.collect()(monologue)[0]
)
end_time = (
lens["elements"]
.Each()
.Filter(lambda x: "end_timestamp" in x)["end_timestamp"]
.collect()(monologue)[-1]
)
except IndexError:
print(f'error when loading timestamp events in wav:{wav_path} skipping.')
continue
# offset by 500 msec to include first vad? discarded audio
full_tscript_wav_seg = wav_seg[time_to_msecs(start_time) - 500 : time_to_msecs(end_time)]
tscript_wav_seg = strip_silence(full_tscript_wav_seg)
tscript_wav_fb = BytesIO()
tscript_wav_seg.export(tscript_wav_fb, format="wav")
tscript_wav = tscript_wav_fb.getvalue()
text = "".join(lens["elements"].Each()["value"].collect()(monologue))
text_clean = re.sub(r"\[.*\]", "", text)
yield text_clean, tscript_wav_seg.duration_seconds, tscript_wav
def generate_rev_asr_data():
full_asr_data = []
total_duration = 0
for wav, wav_path, ev in wav_event_generator(call_audio_dir):
if wav.channels > 2:
print(f'skipping many channel audio {wav_path}')
asr_data_generator = mono_asr_data_generator if wav.channels == 1 else dual_asr_data_generator
asr_data = asr_data_generator(wav, wav_path, ev)
total_duration += wav.duration_seconds
full_asr_data.append(asr_data)

View File

@ -0,0 +1 @@

View File

@ -16,16 +16,12 @@ from ..utils import (
app = typer.Typer()
def preprocess_datapoint(idx, rel_root, sample, use_domain_asr):
def preprocess_datapoint(idx, rel_root, sample, use_domain_asr, annotation_only):
import matplotlib.pyplot as plt
import librosa
import librosa.display
from pydub import AudioSegment
from nemo.collections.asr.metrics import word_error_rate
from jasper.client import (
transcriber_pretrained,
transcriber_speller,
)
try:
res = dict(sample)
@ -40,8 +36,13 @@ def preprocess_datapoint(idx, rel_root, sample, use_domain_asr):
.set_sample_width(2)
.set_frame_rate(24000)
)
if not annotation_only:
from jasper.client import transcriber_pretrained, transcriber_speller
res["pretrained_asr"] = transcriber_pretrained(aud_seg.raw_data)
res["pretrained_wer"] = word_error_rate([res["text"]], [res["pretrained_asr"]])
res["pretrained_wer"] = word_error_rate(
[res["text"]], [res["pretrained_asr"]]
)
if use_domain_asr:
res["domain_asr"] = transcriber_speller(aud_seg.raw_data)
res["domain_wer"] = word_error_rate(
@ -67,9 +68,14 @@ def preprocess_datapoint(idx, rel_root, sample, use_domain_asr):
@app.command()
def dump_validation_ui_data(
data_manifest_path: Path = Path("./data/asr_data/call_alphanum/manifest.json"),
dump_path: Path = Path("./data/valiation_data/ui_dump.json"),
data_manifest_path: Path = typer.Option(
Path("./data/asr_data/call_alphanum/manifest.json"), show_default=True
),
dump_path: Path = typer.Option(
Path("./data/valiation_data/ui_dump.json"), show_default=True
),
use_domain_asr: bool = True,
annotation_only: bool = True,
):
from concurrent.futures import ThreadPoolExecutor
from functools import partial
@ -86,6 +92,7 @@ def dump_validation_ui_data(
data_manifest_path.parent,
json.loads(v),
use_domain_asr,
annotation_only,
)
for i, v in enumerate(pnr_jsonl)
]
@ -94,7 +101,7 @@ def dump_validation_ui_data(
return f()
with ThreadPoolExecutor() as exe:
print("starting all plot tasks")
print("starting all preprocess tasks")
pnr_data = filter(
None,
list(
@ -106,9 +113,16 @@ def dump_validation_ui_data(
)
),
)
if annotation_only:
result = pnr_data
else:
wer_key = "domain_wer" if use_domain_asr else "pretrained_wer"
result = sorted(pnr_data, key=lambda x: x[wer_key], reverse=True)
ui_config = {"use_domain_asr": use_domain_asr, "data": result}
ui_config = {
"use_domain_asr": use_domain_asr,
"data": result,
"annotation_only": annotation_only,
}
ExtendedPath(dump_path).write_json(ui_config)
@ -171,7 +185,9 @@ def update_corrections(
elif d["chars"] in correction_map:
correct_text = correction_map[d["chars"]]
if skip_incorrect:
print(f'skipping incorrect {d["audio_path"]} corrected to {correct_text}')
print(
f'skipping incorrect {d["audio_path"]} corrected to {correct_text}'
)
else:
renamed_set.add(correct_text)
new_name = str(Path(correct_text).with_suffix(".wav"))

View File

@ -61,13 +61,17 @@ def load_ui_data(validation_ui_data_path: Path):
def main(manifest: Path):
ui_config = load_ui_data(manifest)
asr_data = ui_config["data"]
use_domain_asr = ui_config["use_domain_asr"]
use_domain_asr = ui_config.get("use_domain_asr", True)
annotation_only = ui_config.get("annotation_only", False)
sample_no = st.get_current_cursor()
if len(asr_data) - 1 < sample_no or sample_no < 0:
print("Invalid samplno resetting to 0")
st.update_cursor(0)
sample = asr_data[sample_no]
title_type = "Speller " if use_domain_asr else ""
if annotation_only:
st.title(f"ASR Annotation")
else:
st.title(f"ASR {title_type}Validation")
addl_text = f"spelled *{sample['spoken']}*" if use_domain_asr else ""
st.markdown(f"{sample_no+1} of {len(asr_data)} : **{sample['text']}**" + addl_text)
@ -78,6 +82,7 @@ def main(manifest: Path):
st.update_cursor(new_sample - 1)
st.sidebar.title(f"Details: [{sample['real_idx']}]")
st.sidebar.markdown(f"Gold Text: **{sample['text']}**")
if not annotation_only:
if use_domain_asr:
st.sidebar.markdown(f"Expected Spelled: *{sample['spoken']}*")
st.sidebar.title("Results:")
@ -113,10 +118,6 @@ def main(manifest: Path):
st.markdown(
f'Your Response: **{correction_entry["value"]["status"]}** Correction: **{correction_entry["value"]["correction"]}**'
)
# if st.button("Previous Untagged"):
# pass
# if st.button("Next Untagged"):
# pass
text_sample = st.text_input("Go to Text:", value='')
if text_sample != '':
candidates = [i for (i, p) in enumerate(asr_data) if p["text"] == text_sample or p["spoken"] == text_sample]