jasper-asr/jasper/data_utils/process.py

124 lines
4.2 KiB
Python
Raw Normal View History

import json
from pathlib import Path
from sklearn.model_selection import train_test_split
from .utils import alnum_to_asr_tokens, asr_manifest_reader, asr_manifest_writer
import typer
app = typer.Typer()
@app.command()
def separate_space_convert_digit_setpath():
with Path("/home/malar/work/asr-data-utils/asr_data/pnr_data.json").open("r") as pf:
pnr_jsonl = pf.readlines()
pnr_data = [json.loads(i) for i in pnr_jsonl]
new_pnr_data = []
for i in pnr_data:
i["text"] = alnum_to_asr_tokens(i["text"])
i["audio_filepath"] = i["audio_filepath"].replace(
"pnr_data/", "/dataset/asr_data/pnr_data/wav/"
)
new_pnr_data.append(i)
new_pnr_jsonl = [json.dumps(i) for i in new_pnr_data]
with Path("/dataset/asr_data/pnr_data/pnr_data.json").open("w") as pf:
new_pnr_data = "\n".join(new_pnr_jsonl) # + "\n"
pf.write(new_pnr_data)
@app.command()
def split_data(dataset_path: Path, test_size: float = 0.1):
manifest_path = dataset_path / Path("abs_manifest.json")
asr_data = list(asr_manifest_reader(manifest_path))
train_pnr, test_pnr = train_test_split(asr_data, test_size=test_size)
asr_manifest_writer(manifest_path.with_name("train_manifest.json"), train_pnr)
asr_manifest_writer(manifest_path.with_name("test_manifest.json"), test_pnr)
@app.command()
def fixate_data(dataset_path: Path):
manifest_path = dataset_path / Path("manifest.json")
real_manifest_path = dataset_path / Path("abs_manifest.json")
def fix_path():
for i in asr_manifest_reader(manifest_path):
i["audio_filepath"] = str(dataset_path / Path(i["audio_filepath"]))
yield i
asr_manifest_writer(real_manifest_path, fix_path())
# with manifest_path.open("r") as pf:
# pnr_jsonl = pf.readlines()
# pnr_data = [json.loads(i) for i in pnr_jsonl]
# new_pnr_data = []
# for i in pnr_data:
# i["audio_filepath"] = str(dataset_path / Path(i["audio_filepath"]))
# new_pnr_data.append(i)
# new_pnr_jsonl = [json.dumps(i) for i in new_pnr_data]
# real_manifest_path = dataset_path / Path("abs_manifest.json")
# with real_manifest_path.open("w") as pf:
# new_pnr_data = "\n".join(new_pnr_jsonl) # + "\n"
# pf.write(new_pnr_data)
@app.command()
def augment_an4():
an4_train = Path("/dataset/asr_data/an4/train_manifest.json").read_bytes()
an4_test = Path("/dataset/asr_data/an4/test_manifest.json").read_bytes()
pnr_train = Path("/dataset/asr_data/pnr_data/train_manifest.json").read_bytes()
pnr_test = Path("/dataset/asr_data/pnr_data/test_manifest.json").read_bytes()
with Path("/dataset/asr_data/an4_pnr/train_manifest.json").open("wb") as pf:
pf.write(an4_train + pnr_train)
with Path("/dataset/asr_data/an4_pnr/test_manifest.json").open("wb") as pf:
pf.write(an4_test + pnr_test)
# augment_an4()
@app.command()
def validate_data(data_file: Path):
with Path(data_file).open("r") as pf:
pnr_jsonl = pf.readlines()
for (i, s) in enumerate(pnr_jsonl):
try:
d = json.loads(s)
audio_file = data_file.parent / Path(d["audio_filepath"])
if not audio_file.exists():
raise OSError(f"File {audio_file} not found")
except BaseException as e:
print(f'failed on {i} with "{e}"')
print("no errors found. seems like a valid manifest.")
def main():
app()
if __name__ == "__main__":
main()
# def convert_digits(data_file="/dataset/asr_data/an4_pnr/test_manifest.json"):
# with Path(data_file).open("r") as pf:
# pnr_jsonl = pf.readlines()
#
# pnr_data = [json.loads(i) for i in pnr_jsonl]
# new_pnr_data = []
# for i in pnr_data:
# num_tokens = [num2words(c) for c in i["text"] if "0" <= c <= "9"]
# i["text"] = "".join(num_tokens)
# new_pnr_data.append(i)
#
# new_pnr_jsonl = [json.dumps(i) for i in new_pnr_data]
#
# with Path(data_file).open("w") as pf:
# new_pnr_data = "\n".join(new_pnr_jsonl) # + "\n"
# pf.write(new_pnr_data)
#
#
# convert_digits(data_file="/dataset/asr_data/an4_pnr/train_manifest.json")