speech-scoring/speech_data.py

253 lines
13 KiB
Python

import pandas as pd
from speech_tools import apply_by_multiprocessing,threadsafe_iter,reservoir_sample,padd_zeros
# import dask as dd
# import dask.dataframe as ddf
import tensorflow as tf
from tensorflow.python.ops import data_flow_ops
import numpy as np
from speech_spectrum import generate_aiff_spectrogram
from speech_pitch import pitch_array
from speech_pitch import compute_mfcc
from sklearn.model_selection import train_test_split
import os,shutil
import random
import csv
import gc
import pickle
import itertools
from tqdm import tqdm
def siamese_pairs(rightGroup, wrongGroup):
group1 = [r for (i, r) in rightGroup.iterrows()]
group2 = [r for (i, r) in wrongGroup.iterrows()]
rightWrongPairs = [(g1, g2) for g2 in group2 for g1 in group1]#+[(g2, g1) for g2 in group2 for g1 in group1]
rightRightPairs = [i for i in itertools.combinations(group1, 2)]#+[i for i in itertools.combinations(group2, 2)]
def filter_criteria(s1,s2):
same = s1['variant'] == s2['variant']
phon_same = s1['phonemes'] == s2['phonemes']
voice_diff = s1['voice'] != s2['voice']
if not same and phon_same:
return False
# if same and not voice_diff:
# return False
return True
validRWPairs = [i for i in rightWrongPairs if filter_criteria(*i)]
validRRPairs = [i for i in rightRightPairs if filter_criteria(*i)]
random.shuffle(validRWPairs)
random.shuffle(validRRPairs)
# return rightRightPairs[:10],rightWrongPairs[:10]
return validRRPairs[:32],validRWPairs[:32]
def _float_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
def create_spectrogram_tfrecords(audio_group='audio',sample_count=0,train_test_ratio=0.1):
'''
http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/
http://www.machinelearninguru.com/deep_learning/tensorflow/basics/tfrecord/tfrecord.html
'''
audio_samples = pd.read_csv( './outputs/' + audio_group + '.fixed.csv',index_col=0)
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
n_records,n_spec,n_features = 0,0,0
def write_samples(wg,sample_name):
word_group_prog = tqdm(wg,desc='Computing spectrogram')
record_file = './outputs/{}.{}.tfrecords'.format(audio_group,sample_name)
writer = tf.python_io.TFRecordWriter(record_file)
for (w, word_group) in word_group_prog:
word_group_prog.set_postfix(word=w,sample_name=sample_name)
g = word_group.reset_index()
# g['spectrogram'] = apply_by_multiprocessing(g['file_path'],pitch_array)
g['spectrogram'] = apply_by_multiprocessing(g['file_path'],generate_aiff_spectrogram)
# g['spectrogram'] = apply_by_multiprocessing(g['file_path'],compute_mfcc)
sample_right = g.loc[g['variant'] == 'low']
sample_wrong = g.loc[g['variant'] == 'medium']
same, diff = siamese_pairs(sample_right, sample_wrong)
groups = [([0,1],same),([1,0],diff)]
for (output,group) in groups:
group_prog = tqdm(group,desc='Writing Spectrogram')
for sample1,sample2 in group_prog:
group_prog.set_postfix(output=output
,var1=sample1['variant']
,var2=sample2['variant'])
spectro1,spectro2 = sample1['spectrogram'],sample2['spectrogram']
spec_n1,spec_n2 = spectro1.shape[0],spectro2.shape[0]
spec_w1,spec_w2 = spectro1.shape[1],spectro2.shape[1]
spec1,spec2 = spectro1.reshape(-1),spectro2.reshape(-1)
nonlocal n_spec,n_records,n_features
n_spec = max([n_spec,spec_n1,spec_n2])
n_features = spec_w1
n_records+=1
example = tf.train.Example(features=tf.train.Features(
feature={
'word': _bytes_feature([w.encode('utf-8')]),
'phoneme1': _bytes_feature([sample1['phonemes'].encode('utf-8')]),
'phoneme2': _bytes_feature([sample2['phonemes'].encode('utf-8')]),
'voice1': _bytes_feature([sample1['voice'].encode('utf-8')]),
'voice2': _bytes_feature([sample2['voice'].encode('utf-8')]),
'language': _bytes_feature([sample1['language'].encode('utf-8')]),
'rate1':_int64_feature([sample1['rate']]),
'rate2':_int64_feature([sample2['rate']]),
'variant1': _bytes_feature([sample1['variant'].encode('utf-8')]),
'variant2': _bytes_feature([sample2['variant'].encode('utf-8')]),
'file1': _bytes_feature([sample1['file'].encode('utf-8')]),
'file2': _bytes_feature([sample2['file'].encode('utf-8')]),
'spec1':_float_feature(spec1),
'spec2':_float_feature(spec2),
'spec_n1':_int64_feature([spec_n1]),
'spec_w1':_int64_feature([spec_w1]),
'spec_n2':_int64_feature([spec_n2]),
'spec_w2':_int64_feature([spec_w2]),
'output':_int64_feature(output)
}
))
writer.write(example.SerializeToString())
group_prog.close()
word_group_prog.close()
writer.close()
word_groups = [i for i in audio_samples.groupby('word')]
wg_sampled = reservoir_sample(word_groups,sample_count) if sample_count > 0 else word_groups
tr_audio_samples,te_audio_samples = train_test_split(wg_sampled,test_size=train_test_ratio)
write_samples(tr_audio_samples,'train')
write_samples(te_audio_samples,'test')
const_file = os.path.join('./outputs',audio_group+'.constants')
pickle.dump((n_spec,n_features,n_records),open(const_file,'wb'))
def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,test_size=0):
records_file = os.path.join('./outputs',audio_group+'.train.tfrecords')
input_pairs = []
output_class = []
const_file = os.path.join('./outputs',audio_group+'.constants')
(n_spec,n_features,n_records) = pickle.load(open(const_file,'rb'))
def copy_read_consts(dest_dir):
shutil.copy2(const_file,dest_dir+'/constants.pkl')
return (n_spec,n_features,n_records)
# @threadsafe_iter
def record_generator():
print('reading tfrecords({}-train)...'.format(audio_group))
input_data = []
output_data = []
while True:
record_iterator,records_count = record_generator_count(records_file)
#tqdm(enumerate(record_iterator),total=records_count)
#enumerate(record_iterator)
for (i,string_record) in enumerate(record_iterator):
example = tf.train.Example()
example.ParseFromString(string_record)
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
spec_w2 = example.features.feature['spec_w2'].int64_list.value[0]
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
p_spec1,p_spec2 = padd_zeros(spec1,n_spec),padd_zeros(spec2,n_spec)
input_data.append(np.asarray([p_spec1,p_spec2]))
output = example.features.feature['output'].int64_list.value
output_data.append(np.asarray(output))
if len(input_data) == batch_size or i == n_records-1:
input_arr = np.asarray(input_data)
output_arr = np.asarray(output_data)
yield ([input_arr[:, 0], input_arr[:, 1]],output_arr)
input_data = []
output_data = []
# Read test in one-shot
print('reading tfrecords({}-test)...'.format(audio_group))
te_records_file = os.path.join('./outputs',audio_group+'.test.tfrecords')
te_re_iterator,te_n_records = record_generator_count(te_records_file)
test_size = min([test_size,te_n_records]) if test_size > 0 else te_n_records
input_data = np.zeros((test_size,2,n_spec,n_features))
output_data = np.zeros((test_size,2))
random_samples = enumerate(reservoir_sample(te_re_iterator,test_size))
for (i,string_record) in tqdm(random_samples,total=test_size):
example = tf.train.Example()
example.ParseFromString(string_record)
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
spec_w2 = example.features.feature['spec_w2'].int64_list.value[0]
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
p_spec1,p_spec2 = padd_zeros(spec1,n_spec),padd_zeros(spec2,n_spec)
input_data[i] = np.asarray([p_spec1,p_spec2])
output = example.features.feature['output'].int64_list.value
output_data[i] = np.asarray(output)
return record_generator,input_data,output_data,copy_read_consts
def audio_samples_word_count(audio_group='audio'):
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv')
return len(audio_samples.groupby(audio_samples['word']))
def record_generator_count(records_file):
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
count,spec_n = 0,0
for i in record_iterator:
# example = tf.train.Example()
# example.ParseFromString(i)
# spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
# spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
# spec_n = max([spec_n,spec_n1,spec_n2])
count+=1
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
return record_iterator,count #,spec_n
def fix_csv(audio_group='audio'):
audio_csv_lines = open('./outputs/' + audio_group + '.csv','r').readlines()
audio_csv_data = [i.strip().split(',') for i in audio_csv_lines]
proper_rows = [i for i in audio_csv_data if len(i) == 7]
with open('./outputs/' + audio_group + '.fixed.csv','w') as fixed_csv:
fixed_csv_w = csv.writer(fixed_csv, quoting=csv.QUOTE_MINIMAL)
fixed_csv_w.writerows(proper_rows)
audio_samples = pd.read_csv( './outputs/' + audio_group + '.fixed.csv'
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file'])
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists)
audio_samples = audio_samples[audio_samples['file_exists'] == True]
audio_samples = audio_samples.drop(['file_path','file_exists'],axis=1).reset_index(drop=True)
audio_samples.to_csv('./outputs/' + audio_group + '.fixed.csv')
def convert_old_audio():
audio_samples = pd.read_csv( './outputs/audio.csv.old'
, names=['word', 'voice', 'rate', 'variant', 'file'])
audio_samples['phonemes'] = 'unknown'
audio_samples['language'] = 'en-US'
audio_samples.loc[audio_samples['variant'] == 'normal','variant'] = 'low'
audio_samples.loc[audio_samples['variant'] == 'phoneme','variant'] = 'medium'
audio_samples = audio_samples[['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']]
audio_samples.to_csv('./outputs/audio_new.csv',index=False,header=False)
if __name__ == '__main__':
# sunflower_pairs_data()
# create_spectrogram_data()
# create_spectrogram_data('story_words')
# create_spectrogram_tfrecords('story_words')
# create_spectrogram_tfrecords('story_words_test')
# read_siamese_tfrecords('story_all')
# read_siamese_tfrecords('story_words_test')
# padd_zeros_siamese_tfrecords('story_words')
# fix_csv('story_words')
# pickle_constants('story_words')
# create_spectrogram_tfrecords('audio',sample_count=100)
# create_spectrogram_tfrecords('story_all',sample_count=25)
# fix_csv('story_words_test')
# fix_csv('story_words')
create_spectrogram_tfrecords('story_words',sample_count=100,train_test_ratio=0.1)
#record_generator_count()
# create_spectrogram_tfrecords('audio',sample_count=50)
# read_siamese_tfrecords_generator('audio')
# padd_zeros_siamese_tfrecords('audio')
# create_padded_spectrogram()
# create_speech_pairs_data()
# print(speech_model_data())