speech-scoring/speech_data.py

164 lines
8.3 KiB
Python

import pandas as pd
from pandas_parallel import apply_by_multiprocessing
# import dask as dd
# import dask.dataframe as ddf
import tensorflow as tf
import numpy as np
from spectro_gen import generate_aiff_spectrogram
from sklearn.model_selection import train_test_split
import itertools
import os
import random
import csv
import gc
import progressbar
def prog_bar(title):
widgets = [title, progressbar.Counter(), ' [', progressbar.Bar(), '] - ', progressbar.ETA()]
return progressbar.ProgressBar(widgets=widgets)
def siamese_pairs(rightGroup, wrongGroup):
group1 = [r for (i, r) in rightGroup.iterrows()]
group2 = [r for (i, r) in wrongGroup.iterrows()]
rightWrongPairs = [(g1, g2) for g2 in group2 for g1 in group1]
rightRightPairs = [i for i in itertools.combinations(group1, 2)]
random.shuffle(rightWrongPairs)
random.shuffle(rightRightPairs)
# return (random.sample(same,10), random.sample(diff,10))
# return rightRightPairs[:10],rightWrongPairs[:10]
return rightRightPairs[:16],rightWrongPairs[:16]
# return rightRightPairs,rightWrongPairs
def create_spectrogram_tfrecords(audio_group='audio'):
'''
http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/
http://www.machinelearninguru.com/deep_learning/tensorflow/basics/tfrecord/tfrecord.html
'''
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv'
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']
, quoting=csv.QUOTE_NONE)
# audio_samples = audio_samples.loc[audio_samples['word'] ==
# 'sunflowers'].reset_index(drop=True)
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists)
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
# audio_samples['rate_int'] = apply_by_multiprocessing(audio_samples['rate'], str.isdigit)
# audio_samples = audio_samples[audio_samples['rate_int'] == True].reset_index().drop(['level_0'],axis=1)
# audio_samples['rate'] = audio_samples['rate'].astype(int)
def _float_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
writer = tf.python_io.TFRecordWriter('./outputs/' + audio_group + '.tfrecords')
prog = prog_bar('Generating siamese pairs : ')
for (w, word_group) in prog(audio_samples.groupby(audio_samples['word'])):
g = word_group.reset_index()
g['spectrogram'] = apply_by_multiprocessing(g['file_path'],generate_aiff_spectrogram)
sample_right = g.loc[audio_samples['variant'] == 'low']
sample_wrong = g.loc[audio_samples['variant'] == 'medium']
same, diff = siamese_pairs(sample_right, sample_wrong)
groups = [([0,1],same),([1,0],diff)]
for (output,group) in groups:
for sample1,sample2 in group:
spectro1,spectro2 = sample1['spectrogram'],sample2['spectrogram']
spec_n1,spec_n2 = spectro1.shape[0],spectro2.shape[0]
spec_w1,spec_w2 = spectro1.shape[1],spectro2.shape[1]
spec1,spec2 = spectro1.reshape(-1),spectro2.reshape(-1)
example = tf.train.Example(features=tf.train.Features(
feature={
'word': _bytes_feature([w.encode('utf-8')]),
'phoneme1': _bytes_feature([sample1['phonemes'].encode('utf-8')]),
'phoneme2': _bytes_feature([sample2['phonemes'].encode('utf-8')]),
'voice1': _bytes_feature([sample1['voice'].encode('utf-8')]),
'voice2': _bytes_feature([sample2['voice'].encode('utf-8')]),
'language': _bytes_feature([sample1['language'].encode('utf-8')]),
'rate1':_int64_feature([sample1['rate']]),
'rate2':_int64_feature([sample2['rate']]),
'variant1': _bytes_feature([sample1['variant'].encode('utf-8')]),
'variant2': _bytes_feature([sample2['variant'].encode('utf-8')]),
'file1': _bytes_feature([sample1['file'].encode('utf-8')]),
'file2': _bytes_feature([sample2['file'].encode('utf-8')]),
'spec1':_float_feature(spec1),
'spec2':_float_feature(spec2),
'spec_n1':_int64_feature([spec_n1]),
'spec_w1':_int64_feature([spec_w1]),
'spec_n2':_int64_feature([spec_n2]),
'spec_w2':_int64_feature([spec_w2]),
'output':_int64_feature(output)
}
))
writer.write(example.SerializeToString())
writer.close()
def read_siamese_tfrecords(audio_group='audio'):
records_file = os.path.join('./outputs',audio_group+'.tfrecords')
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
input_pairs = []
output_class = []
input_words = []
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
word = example.features.feature['word'].bytes_list.value[0]
input_words.append(word)
example.features.feature['spec2'].float_list.value[0]
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
spec_w2 = example.features.feature['spec_w2'].int64_list.value[0]
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
input_pairs.append([spec1,spec2])
output = example.features.feature['output'].int64_list.value
output_class.append(output)
return input_pairs,output_class
def audio_samples_word_count(audio_group='audio'):
audio_group = 'story_all'
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv'
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']
, quoting=csv.QUOTE_NONE)
# audio_samples = audio_samples.loc[audio_samples['word'] ==
# 'sunflowers'].reset_index(drop=True)
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists)
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
return len(audio_samples.groupby(audio_samples['word']))
def fix_csv(audio_group='audio'):
audio_csv_lines = open('./outputs/' + audio_group + '.csv','r').readlines()
audio_csv_data = [i.strip().split(',') for i in audio_csv_lines]
# audio_samples = pd.read_csv( './outputs/story_words.csv'
# , names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']
# , quoting=csv.QUOTE_NONE)
# voice_set = set(audio_samples['voice'].unique().tolist())
# to_be_fixed = [i for i in audio_csv_data if len(i) > 7]
# def unite_words(entries):
# entries = to_be_fixed[0]
# word_entries = next(((entries[:i],entries[i:]) for (i,e) in enumerate(entries) if e in voice_set),'')
# word_entries[1]
# return
# to_be_fixed[0]
# entries = [unite_words for e in to_be_fixed]
# [i for i in entries if len(i) % 2 != 0]
proper_rows = [i for i in audio_csv_data if len(i) == 7]
with open('./outputs/' + audio_group + '-new.csv','w') as fixed_csv:
fixed_csv_w = csv.writer(fixed_csv, quoting=csv.QUOTE_MINIMAL)
fixed_csv_w.writerows(proper_rows)
if __name__ == '__main__':
# sunflower_pairs_data()
# create_spectrogram_data()
# create_spectrogram_data('story_words')
# create_spectrogram_tfrecords('story_words')
create_spectrogram_tfrecords('story_all')
# create_padded_spectrogram()
# create_speech_pairs_data()
# print(speech_model_data())