speech-scoring/segment_model.py

145 lines
5.6 KiB
Python

from __future__ import absolute_import
from __future__ import print_function
import numpy as np
from keras.models import Model,load_model,model_from_yaml
from keras.layers import Input,Concatenate,Lambda, Reshape, Dropout
from keras.layers import Dense,Conv2D, LSTM, Bidirectional, GRU
from keras.layers import BatchNormalization,Activation
from keras.losses import categorical_crossentropy
from keras.utils import to_categorical
from keras.optimizers import RMSprop,Adadelta,Adagrad,Adam,Nadam
from keras.callbacks import TensorBoard, ModelCheckpoint
from keras import backend as K
from keras.utils import plot_model
from speech_tools import create_dir,step_count
from segment_data import read_segments_tfrecords_generator
# import importlib
# import segment_data
# import speech_tools
# importlib.reload(segment_data)
# importlib.reload(speech_tools)
# TODO implement ctc losses
# https://github.com/fchollet/keras/blob/master/examples/image_ocr.py
def accuracy(y_true, y_pred):
'''Compute classification accuracy with a fixed threshold on distances.
'''
return K.mean(K.equal(y_true, K.cast(y_pred > 0.5, y_true.dtype)))
def ctc_lambda_func(args):
y_pred, labels, input_length, label_length = args
# the 2 is critical here since the first couple outputs of the RNN
# tend to be garbage:
y_pred = y_pred[:, 2:, :]
return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
def segment_model(input_dim):
inp = Input(shape=input_dim)
cnv1 = Conv2D(filters=32, kernel_size=(5,9))(inp)
cnv2 = Conv2D(filters=1, kernel_size=(5,9))(cnv1)
dr_cnv2 = Dropout(rate=0.95)(cnv2)
cn_rnn_dim = (dr_cnv2.shape[1].value,dr_cnv2.shape[2].value)
r_dr_cnv2 = Reshape(target_shape=cn_rnn_dim)(dr_cnv2)
b_gr1 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(r_dr_cnv2)
b_gr2 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(b_gr1)
b_gr3 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(b_gr2)
oup = Dense(2, activation='softmax')(b_gr3)
return Model(inp, oup)
def simple_segment_model(input_dim):
inp = Input(shape=input_dim)
b_gr1 = Bidirectional(LSTM(32, return_sequences=True))(inp)
b_gr1 = Bidirectional(LSTM(16, return_sequences=True),merge_mode='sum')(b_gr1)
b_gr1 = LSTM(1, return_sequences=True,activation='softmax')(b_gr1)
# b_gr1 = LSTM(4, return_sequences=True)(b_gr1)
# b_gr1 = LSTM(2, return_sequences=True)(b_gr1)
# bn_b_gr1 = BatchNormalization(momentum=0.98)(b_gr1)
# b_gr2 = GRU(64, return_sequences=True)(b_gr1)
# bn_b_gr2 = BatchNormalization(momentum=0.98)(b_gr2)
# d1 = Dense(32)(b_gr2)
# bn_d1 = BatchNormalization(momentum=0.98)(d1)
# bn_da1 = Activation('relu')(bn_d1)
# d2 = Dense(8)(bn_da1)
# bn_d2 = BatchNormalization(momentum=0.98)(d2)
# bn_da2 = Activation('relu')(bn_d2)
# d3 = Dense(1)(b_gr1)
# # bn_d3 = BatchNormalization(momentum=0.98)(d3)
# bn_da3 = Activation('softmax')(d3)
oup = Reshape(target_shape=(input_dim[0],))(b_gr1)
return Model(inp, oup)
def write_model_arch(mod,mod_file):
model_f = open(mod_file,'w')
model_f.write(mod.to_yaml())
model_f.close()
def load_model_arch(mod_file):
model_f = open(mod_file,'r')
mod = model_from_yaml(model_f.read())
model_f.close()
return mod
def train_segment(collection_name = 'test',resume_weights='',initial_epoch=0):
# collection_name = 'story_test'
batch_size = 128
# batch_size = 4
model_dir = './models/segment/'+collection_name
create_dir(model_dir)
log_dir = './logs/segment/'+collection_name
create_dir(log_dir)
tr_gen_fn,te_x,te_y,copy_read_consts = read_segments_tfrecords_generator(collection_name,batch_size,2*batch_size)
tr_gen = tr_gen_fn()
n_step,n_features,n_records = copy_read_consts(model_dir)
input_dim = (n_step, n_features)
model = simple_segment_model(input_dim)
# model.output_shape,model.input_shape
plot_model(model,show_shapes=True, to_file=model_dir+'/model.png')
# loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
tb_cb = TensorBoard(
log_dir=log_dir,
histogram_freq=1,
batch_size=32,
write_graph=True,
write_grads=True,
write_images=True,
embeddings_freq=0,
embeddings_layer_names=None,
embeddings_metadata=None)
cp_file_fmt = model_dir+'/speech_segment_model-{epoch:02d}-epoch-{val_loss:0.2f}\
-acc.h5'
cp_cb = ModelCheckpoint(
cp_file_fmt,
monitor='val_loss',
verbose=0,
save_best_only=False,
save_weights_only=True,
mode='auto',
period=1)
# train
opt = RMSprop()
model.compile(loss=categorical_crossentropy, optimizer=opt, metrics=[accuracy])
write_model_arch(model,model_dir+'/speech_segment_model_arch.yaml')
epoch_n_steps = step_count(n_records,batch_size)
if resume_weights != '':
model.load_weights(resume_weights)
model.fit_generator(tr_gen
, epochs=10000
, steps_per_epoch=epoch_n_steps
, validation_data=(te_x, te_y)
, max_queue_size=32
, callbacks=[tb_cb, cp_cb],initial_epoch=initial_epoch)
model.save(model_dir+'/speech_segment_model-final.h5')
# y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]])
# te_acc = compute_accuracy(te_y, y_pred)
# print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))
if __name__ == '__main__':
# pass
train_segment('story_words')#,'./models/segment/story_phrases.1000/speech_segment_model-final.h5',1001)