from __future__ import absolute_import from __future__ import print_function import numpy as np # from speech_data import speech_model_data from speech_data import read_siamese_tfrecords from keras.models import Model,load_model from keras.layers import Input, Dense, Dropout, LSTM, Lambda, Concatenate from keras.losses import categorical_crossentropy # from keras.losses import binary_crossentropy from keras.utils import to_categorical # from keras.utils.np_utils import to_categorical from keras.optimizers import RMSprop from keras.callbacks import TensorBoard, ModelCheckpoint from keras import backend as K def euclidean_distance(vects): x, y = vects return K.sqrt( K.maximum(K.sum(K.square(x - y), axis=1, keepdims=True), K.epsilon())) def eucl_dist_output_shape(shapes): shape1, shape2 = shapes return (shape1[0], 1) def contrastive_loss(y_true, y_pred): '''Contrastive loss from Hadsell-et-al.'06 http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf ''' return K.mean(y_true * K.square(y_pred) + (1 - y_true) * K.square(K.maximum(1 - y_pred, 0))) def create_base_rnn_network(input_dim): '''Base network to be shared (eq. to feature extraction). ''' inp = Input(shape=input_dim) ls1 = LSTM(256, return_sequences=True)(inp) ls2 = LSTM(128, return_sequences=True)(ls1) # ls3 = LSTM(32, return_sequences=True)(ls2) ls4 = LSTM(64)(ls2) return Model(inp, ls4) def compute_accuracy(y_true, y_pred): '''Compute classification accuracy with a fixed threshold on distances. ''' pred = y_pred.ravel() < 0.5 return np.mean(pred == y_true) def accuracy(y_true, y_pred): '''Compute classification accuracy with a fixed threshold on distances. ''' return K.mean(K.equal(y_true, K.cast(y_pred > 0.5, y_true.dtype))) def dense_classifier(processed): conc_proc = Concatenate()(processed) d1 = Dense(16, activation='relu')(conc_proc) # dr1 = Dropout(0.1)(d1) d2 = Dense(8, activation='relu')(d1) # dr2 = Dropout(0.1)(d2) return Dense(2, activation='softmax')(d2) def siamese_model(input_dim): # input_dim = (15, 1654) base_network = create_base_rnn_network(input_dim) input_a = Input(shape=input_dim) input_b = Input(shape=input_dim) processed_a = base_network(input_a) processed_b = base_network(input_b) final_output = dense_classifier([processed_a,processed_b]) model = Model([input_a, input_b], final_output) # distance = Lambda( # euclidean_distance, # output_shape=eucl_dist_output_shape)([processed_a, processed_b]) # model = Model([input_a, input_b], distance) return model def train_siamese(): # the data, shuffled and split between train and test sets # tr_pairs, te_pairs, tr_y_e, te_y_e = speech_model_data() (tr_pairs,te_pairs,tr_y,te_y,n_step,n_features) = read_siamese_tfrecords('story_words_test') # tr_y = to_categorical(tr_y_e, num_classes=2) # te_y = to_categorical(te_y_e, num_classes=2) input_dim = (n_step, n_features) model = siamese_model(input_dim) tb_cb = TensorBoard( log_dir='./logs/siamese_logs', histogram_freq=1, batch_size=32, write_graph=True, write_grads=True, write_images=True, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None) cp_file_fmt = './models/siamese_speech_model-{epoch:02d}-epoch-{val_loss:0.2f}\ -acc.h5' cp_cb = ModelCheckpoint( cp_file_fmt, monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=1) # train rms = RMSprop(lr=0.001) model.compile(loss=categorical_crossentropy, optimizer=rms, metrics=[accuracy]) model.fit( [tr_pairs[:, 0], tr_pairs[:, 1]], tr_y, batch_size=128, epochs=100, validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y), callbacks=[tb_cb, cp_cb]) model.save('./models/siamese_speech_model-final.h5') # compute final accuracy on training and test sets y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]]) tr_acc = compute_accuracy(tr_y, y_pred) y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]]) te_acc = compute_accuracy(te_y, y_pred) print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc)) print('* Accuracy on test set: %0.2f%%' % (100 * te_acc)) if __name__ == '__main__': train_siamese()