from speech_siamese import siamese_model from record_mic_speech import record_spectrogram # from importlib import reload # import speech_data # reload(speech_data) import numpy as np import os import pickle import tensorflow as tf import csv from speech_data import padd_zeros def predict_recording_with(m,sample_size=15): spec1 = record_spectrogram(n_sec=1.4) spec2 = record_spectrogram(n_sec=1.4) inp = create_test_pair(spec1,spec2,sample_size) return m.predict([inp[:, 0], inp[:, 1]]) # while(True): # print(predict_recording_with(model)) def test_with(audio_group): X,Y = speech_data(audio_group) print(np.argmax(model.predict([X[:, 0], X[:, 1]]),axis=1)) print(Y.astype(np.int8)) def evaluate_siamese(audio_group='audio',model_file = 'siamese_speech_model-46-epoch-0.29-acc.h5'): records_file = os.path.join('./outputs',audio_group+'.train.tfrecords') const_file = os.path.join('./outputs',audio_group+'.constants') model_weights_path =os.path.join('./models/story_words/',model_file) (n_spec,n_features,n_records) = pickle.load(open(const_file,'rb')) print('evaluating tfrecords({}-train)...'.format(audio_group)) model = siamese_model((n_spec, n_features)) model.load_weights(model_weights_path) record_iterator = tf.python_io.tf_record_iterator(path=records_file) #tqdm(enumerate(record_iterator),total=n_records) with open('./outputs/' + audio_group + '.results.csv','w') as result_csv: result_csv_w = csv.writer(result_csv, quoting=csv.QUOTE_MINIMAL) for (i,string_record) in enumerate(record_iterator): # string_record = next(record_iterator) example = tf.train.Example() example.ParseFromString(string_record) spec_n1 = example.features.feature['spec_n1'].int64_list.value[0] spec_n2 = example.features.feature['spec_n2'].int64_list.value[0] spec_w1 = example.features.feature['spec_w1'].int64_list.value[0] spec_w2 = example.features.feature['spec_w2'].int64_list.value[0] spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1) spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2) p_spec1,p_spec2 = padd_zeros(spec1,n_spec),padd_zeros(spec2,n_spec) input_arr = np.asarray([[p_spec1,p_spec2]]) output_arr = np.asarray([example.features.feature['output'].int64_list.value]) y_pred = model.predict([input_arr[:, 0], input_arr[:, 1]]) predicted = np.asarray(y_pred[0]>0.5).astype(output_arr.dtype) expected = output_arr[0] if np.all(predicted == expected): continue word = example.features.feature['word'].bytes_list.value[0].decode() phoneme1 = example.features.feature['phoneme1'].bytes_list.value[0].decode() phoneme2 = example.features.feature['phoneme2'].bytes_list.value[0].decode() voice1 = example.features.feature['voice1'].bytes_list.value[0].decode() voice2 = example.features.feature['voice2'].bytes_list.value[0].decode() language = example.features.feature['language'].bytes_list.value[0].decode() rate1 = example.features.feature['rate1'].int64_list.value[0] rate2 = example.features.feature['rate2'].int64_list.value[0] variant1 = example.features.feature['variant1'].bytes_list.value[0].decode() variant2 = example.features.feature['variant2'].bytes_list.value[0].decode() file1 = example.features.feature['file1'].bytes_list.value[0].decode() file2 = example.features.feature['file2'].bytes_list.value[0].decode() print(phoneme1,phoneme2,voice1,voice2,rate1,rate2,variant1,variant2,file1,file2) result_csv_w.writerow([phoneme1,phoneme2,voice1,voice2,rate1,rate2,variant1,variant2,file1,file2]) evaluate_siamese('story_words',model_file='siamese_speech_model-92-epoch-0.20-acc.h5') # test_with('rand_edu') # sunflower_data,sunflower_result = get_word_pairs_data('sweater',15) # print(np.argmax(model.predict([sunflower_data[:, 0], sunflower_data[:, 1]]),axis=1)) # print(sunflower_result)