'''Train a Siamese MLP on pairs of digits from the MNIST dataset. It follows Hadsell-et-al.'06 [1] by computing the Euclidean distance on the output of the shared network and by optimizing the contrastive loss (see paper for mode details). [1] "Dimensionality Reduction by Learning an Invariant Mapping" http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf Gets to 97.2% test accuracy after 20 epochs. 2 seconds per epoch on a Titan X Maxwell GPU ''' from __future__ import absolute_import from __future__ import print_function import numpy as np import random # from keras.datasets import mnist from speech_data import sunflower_pairs_data from keras.models import Model from keras.layers import Dense, Dropout, Input, Lambda, LSTM, SimpleRNN from keras.optimizers import RMSprop from keras import backend as K def euclidean_distance(vects): x, y = vects return K.sqrt(K.maximum(K.sum(K.square(x - y), axis=1, keepdims=True), K.epsilon())) def eucl_dist_output_shape(shapes): shape1, shape2 = shapes return (shape1[0], 1) def contrastive_loss(y_true, y_pred): '''Contrastive loss from Hadsell-et-al.'06 http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf ''' margin = 1 return K.mean(y_true * K.square(y_pred) + (1 - y_true) * K.square(K.maximum(margin - y_pred, 0))) def create_base_network(input_dim): '''Base network to be shared (eq. to feature extraction). ''' inp = Input(shape=input_dim) sr1 = SimpleRNN(128)(inp) # sr2 = LSTM(128)(sr1) # sr2 = SimpleRNN(128)(sr) x = Dense(128, activation='relu')(sr1) return Model(inp, x) def compute_accuracy(y_true, y_pred): '''Compute classification accuracy with a fixed threshold on distances. ''' pred = y_pred.ravel() < 0.5 return np.mean(pred == y_true) def accuracy(y_true, y_pred): '''Compute classification accuracy with a fixed threshold on distances. ''' return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype))) # the data, shuffled and split between train and test sets tr_pairs,te_pairs,tr_y,te_y = sunflower_pairs_data() # y_train.shape,y_test.shape # x_train.shape,x_test.shape # x_train = x_train.reshape(60000, 784) # x_test = x_test.reshape(10000, 784) # x_train = x_train.astype('float32') # x_test = x_test.astype('float32') # x_train /= 255 # x_test /= 255 input_dim = tr_pairs.shape[2:] epochs = 20 # network definition base_network = create_base_network(input_dim) input_a = Input(shape=input_dim) input_b = Input(shape=input_dim) # because we re-use the same instance `base_network`, # the weights of the network # will be shared across the two branches processed_a = base_network(input_a) processed_b = base_network(input_b) distance = Lambda(euclidean_distance, output_shape=eucl_dist_output_shape)([processed_a, processed_b]) model = Model([input_a, input_b], distance) # train rms = RMSprop() model.compile(loss=contrastive_loss, optimizer=rms, metrics=[accuracy]) model.fit([tr_pairs[:, 0], tr_pairs[:, 1]], tr_y, batch_size=128, epochs=epochs, validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y)) # compute final accuracy on training and test sets y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]]) tr_acc = compute_accuracy(tr_y, y_pred) y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]]) te_acc = compute_accuracy(te_y, y_pred) print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc)) print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))