from speech_siamese import siamese_model from record_mic_speech import record_spectrogram from importlib import reload # import speech_data # reload(speech_data) from speech_data import create_test_pair,get_word_pairs_data,speech_data import numpy as np model = siamese_model((15, 1654)) model.load_weights('./models/siamese_speech_model-final.h5') def predict_recording_with(m,sample_size=15): spec1 = record_spectrogram(n_sec=1.4) spec2 = record_spectrogram(n_sec=1.4) inp = create_test_pair(spec1,spec2,sample_size) return m.predict([inp[:, 0], inp[:, 1]]) # while(True): # print(predict_recording_with(model)) def test_with(audio_group): X,Y = speech_data(audio_group) print(np.argmax(model.predict([X[:, 0], X[:, 1]]),axis=1)) print(Y.astype(np.int8)) test_with('rand_edu') # sunflower_data,sunflower_result = get_word_pairs_data('sweater',15) # print(np.argmax(model.predict([sunflower_data[:, 0], sunflower_data[:, 1]]),axis=1)) # print(sunflower_result)