from speech_siamese import siamese_model from record_mic_speech import record_spectrogram from importlib import reload import speech_data reload(speech_data) from speech_data import create_test_pair,get_word_pairs_data import numpy as np model = siamese_model((15, 1654)) model.load_weights('./models/siamese_speech_model-final.h5') def predict_recording_with(m,sample_size=15): spec1 = record_spectrogram(n_sec=1.4) spec2 = record_spectrogram(n_sec=1.4) inp = create_test_pair(spec1,spec2,sample_size) return m.predict([inp[:, 0], inp[:, 1]]) predict_recording_with(model) sunflower_data,sunflower_result = get_word_pairs_data('sunflowers',15) sunflower_result model.predict([sunflower_data[:, 0], sunflower_data[:, 1]]) < 0.5