from __future__ import absolute_import from __future__ import print_function import numpy as np from keras.models import Model,load_model,model_from_yaml from keras.layers import Input,Concatenate,Lambda, BatchNormalization, Dropout from keras.layers import Dense, LSTM, Bidirectional, GRU from keras.losses import categorical_crossentropy from keras.utils import to_categorical from keras.optimizers import RMSprop from keras.callbacks import TensorBoard, ModelCheckpoint from keras import backend as K from keras.utils import plot_model from speech_tools import create_dir,step_count from speech_data import segment_data_gen def accuracy(y_true, y_pred): '''Compute classification accuracy with a fixed threshold on distances. ''' return K.mean(K.equal(y_true, K.cast(y_pred > 0.5, y_true.dtype))) def dense_classifier(processed): conc_proc = Concatenate()(processed) d1 = Dense(64, activation='relu')(conc_proc) # dr1 = Dropout(0.1)(d1) # d2 = Dense(128, activation='relu')(d1) d3 = Dense(8, activation='relu')(d1) # dr2 = Dropout(0.1)(d2) return Dense(2, activation='softmax')(d3) def segment_model(input_dim): inp = Input(shape=input_dim) # ls0 = LSTM(512, return_sequences=True)(inp) ls1 = LSTM(128, return_sequences=True)(inp) ls2 = LSTM(64, return_sequences=True)(ls1) # ls3 = LSTM(32, return_sequences=True)(ls2) ls4 = LSTM(32)(ls2) d1 = Dense(64, activation='relu')(ls4) d3 = Dense(8, activation='relu')(d1) oup = Dense(2, activation='softmax')(d3) return Model(inp, oup) def write_model_arch(mod,mod_file): model_f = open(mod_file,'w') model_f.write(mod.to_yaml()) model_f.close() def load_model_arch(mod_file): model_f = open(mod_file,'r') mod = model_from_yaml(model_f.read()) model_f.close() return mod def train_segment(collection_name = 'test'): batch_size = 128 model_dir = './models/segment/'+collection_name create_dir(model_dir) log_dir = './logs/segment/'+collection_name create_dir(log_dir) tr_gen_fn = segment_data_gen() tr_gen = tr_gen_fn() input_dim = (n_step, n_features) model = segment_model(input_dim) plot_model(model,show_shapes=True, to_file=model_dir+'/model.png') tb_cb = TensorBoard( log_dir=log_dir, histogram_freq=1, batch_size=32, write_graph=True, write_grads=True, write_images=True, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None) cp_file_fmt = model_dir+'/siamese_speech_model-{epoch:02d}-epoch-{val_loss:0.2f}\ -acc.h5' cp_cb = ModelCheckpoint( cp_file_fmt, monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='auto', period=1) # train rms = RMSprop() model.compile(loss=categorical_crossentropy, optimizer=rms, metrics=[accuracy]) write_model_arch(model,model_dir+'/siamese_speech_model_arch.yaml') epoch_n_steps = step_count(n_records,batch_size) model.fit_generator(tr_gen , epochs=1000 , steps_per_epoch=epoch_n_steps , validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y) , max_queue_size=32 , callbacks=[tb_cb, cp_cb]) model.save(model_dir+'/speech_segment_model-final.h5') y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]]) te_acc = compute_accuracy(te_y, y_pred) print('* Accuracy on test set: %0.2f%%' % (100 * te_acc)) if __name__ == '__main__': train_segment('test')