from __future__ import absolute_import from __future__ import print_function import numpy as np from speech_data import read_siamese_tfrecords_generator from keras.models import Model,load_model,model_from_yaml from keras.layers import Input,Concatenate,Lambda, BatchNormalization, Dropout from keras.layers import Dense, LSTM, Bidirectional, GRU from keras.losses import categorical_crossentropy from keras.utils import to_categorical from keras.optimizers import RMSprop from keras.callbacks import TensorBoard, ModelCheckpoint from keras import backend as K from keras.utils import plot_model from speech_tools import create_dir,step_count def create_base_rnn_network(input_dim): '''Base network to be shared (eq. to feature extraction). ''' inp = Input(shape=input_dim) # ls0 = LSTM(512, return_sequences=True)(inp) ls1 = LSTM(128, return_sequences=True)(inp) bn_ls1 = BatchNormalization(momentum=0.98)(ls1) ls2 = LSTM(64, return_sequences=True)(bn_ls1) bn_ls2 = BatchNormalization(momentum=0.98)(ls2) # ls3 = LSTM(32, return_sequences=True)(ls2) ls4 = LSTM(32)(bn_ls2) # d1 = Dense(128, activation='relu')(ls4) #d2 = Dense(64, activation='relu')(ls2) return Model(inp, ls4) def compute_accuracy(y_true, y_pred): '''Compute classification accuracy with a fixed threshold on distances. ''' pred = y_pred.ravel() > 0.5 return np.mean(pred == y_true) def accuracy(y_true, y_pred): '''Compute classification accuracy with a fixed threshold on distances. ''' return K.mean(K.equal(y_true, K.cast(y_pred > 0.5, y_true.dtype))) def dense_classifier(processed): conc_proc = Concatenate()(processed) d1 = Dense(64, activation='relu')(conc_proc) # dr1 = Dropout(0.1)(d1) bn_d1 = BatchNormalization(momentum=0.98)(d1) # d2 = Dense(128, activation='relu')(d1) d3 = Dense(8, activation='relu')(bn_d1) bn_d3 = BatchNormalization(momentum=0.98)(d3) # dr2 = Dropout(0.1)(d2) return Dense(2, activation='softmax')(bn_d3) def siamese_model(input_dim): base_network = create_base_rnn_network(input_dim) input_a = Input(shape=input_dim) input_b = Input(shape=input_dim) processed_a = base_network(input_a) processed_b = base_network(input_b) final_output = dense_classifier([processed_a,processed_b]) model = Model([input_a, input_b], final_output) return model,base_network def write_model_arch(mod,mod_file): model_f = open(mod_file,'w') model_f.write(mod.to_yaml()) model_f.close() def load_model_arch(mod_file): model_f = open(mod_file,'r') mod = model_from_yaml(model_f.read()) model_f.close() return mod def train_siamese(audio_group = 'audio',resume_weights='',initial_epoch=0): batch_size = 128 model_dir = './models/'+audio_group create_dir(model_dir) log_dir = './logs/'+audio_group create_dir(log_dir) tr_gen_fn,te_pairs,te_y,copy_read_consts = read_siamese_tfrecords_generator(audio_group,batch_size=batch_size,test_size=batch_size) n_step,n_features,n_records = copy_read_consts(model_dir) tr_gen = tr_gen_fn() input_dim = (n_step, n_features) model,base_model = siamese_model(input_dim) plot_model(model,show_shapes=True, to_file=model_dir+'/model.png') plot_model(base_model,show_shapes=True, to_file=model_dir+'/base_model.png') tb_cb = TensorBoard( log_dir=log_dir, histogram_freq=1, batch_size=32, write_graph=True, write_grads=True, write_images=True, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None) cp_file_fmt = model_dir+'/siamese_speech_model-{epoch:02d}-epoch-{val_loss:0.2f}\ -acc.h5' cp_cb = ModelCheckpoint( cp_file_fmt, monitor='acc', verbose=0, save_best_only=True, save_weights_only=True, mode='auto', period=1) # train rms = RMSprop() model.compile(loss=categorical_crossentropy, optimizer=rms, metrics=[accuracy]) write_model_arch(model,model_dir+'/siamese_speech_model_arch.yaml') epoch_n_steps = step_count(n_records,batch_size) if resume_weights != '': model.load_weights(resume_weights) model.fit_generator(tr_gen , epochs=10000 , steps_per_epoch=epoch_n_steps , validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y) , max_queue_size=8 , callbacks=[tb_cb, cp_cb],initial_epoch=initial_epoch) model.save(model_dir+'/siamese_speech_model-final.h5') # y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]]) # te_acc = compute_accuracy(te_y, y_pred) # print('* Accuracy on test set: %0.2f%%' % (100 * te_acc)) if __name__ == '__main__': train_siamese('test_5_words')