### Setup `. env/bin/activate` to activate the virtualenv. ### Data Generation * update `OUTPUT_NAME` in *speech_samplegen.py* to create the dataset folder with the name * `python speech_samplegen.py` generates variants of audio samples ### Data Preprocessing * `python speech_data.py` creates the training-testing data from the generated samples. * run `fix_csv(OUTPUT_NAME)` once to create the fixed index of the dataset generated * run `generate_sppas_trans(OUTPUT_NAME)` once to create the SPPAS transcription(wav+txt) data * run `$ (SPPAS_DIR)/bin/annotation.py -l eng -e csv --ipus --tok --phon --align --align -w ./outputs/OUTPUT_NAME/` once to create the phoneme alignment csv files for all variants. * `create_seg_phonpair_tfrecords(OUTPUT_NAME)` creates the tfrecords files with the phoneme level pairs of right/wrong stresses ### Training * `python speech_model.py` trains the model with the training data generated. * `train_siamese(OUTPUT_NAME)` trains the siamese model with the generated dataset. ### Testing * `python speech_test.py` tests the trained model with the test dataset * `evaluate_siamese(TEST_RECORD_FILE,audio_group=OUTPUT_NAME,weights = WEIGHTS_FILE_NAME)` the TEST_RECORD_FILE will be under outputs directory and WEIGHTS_FILE_NAME will be under the models directory, pick the most recent weights file.