Compare commits

...

2 Commits

Author SHA1 Message Date
Malar Kannan 046343680e implemented siamese pair tfrecord writer 2017-11-06 15:48:38 +05:30
Malar Kannan c187fbe1ca implemented tfrecord writer for spectrograms 2017-11-06 14:12:09 +05:30
1 changed files with 55 additions and 18 deletions

View File

@ -1,7 +1,8 @@
import pandas as pd
from pandas_parallel import apply_by_multiprocessing
import dask as dd
import dask.dataframe as ddf
# import dask as dd
# import dask.dataframe as ddf
import tensorflow as tf
import numpy as np
from spectro_gen import generate_aiff_spectrogram
from sklearn.model_selection import train_test_split
@ -22,6 +23,15 @@ def get_siamese_pairs(groupF1, groupF2):
# return (random.sample(same,10), random.sample(diff,10))
return same[:10],diff[:10]
def siamese_pairs(rightGroup, wrongGroup):
group1 = [r for (i, r) in rightGroup.iterrows()]
group2 = [r for (i, r) in wrongGroup.iterrows()]
rightWrongPairs = [(g1, g2) for g2 in group2 for g1 in group1]
rightRightPairs = [i for i in itertools.combinations(group1, 2)]
random.shuffle(rightWrongPairs)
random.shuffle(rightRightPairs)
# return (random.sample(same,10), random.sample(diff,10))
return rightRightPairs[:10],rightWrongPairs[:10]
def append_zeros(spgr, max_samples):
return np.lib.pad(spgr, [(0, max_samples - spgr.shape[0]), (0, 0)],
@ -96,12 +106,9 @@ def create_spectrogram_tfrecords(audio_group='audio'):
, quoting=csv.QUOTE_NONE)
# audio_samples = audio_samples.loc[audio_samples['word'] ==
# 'sunflowers'].reset_index(drop=True)
audio_samples['file_paths'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_paths'], os.path.exists)
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists)
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
# audio_samples['spectrogram'] = apply_by_multiprocessing(audio_samples['file_paths'],generate_aiff_spectrogram)#.apply(
# audio_samples['window_count'] = audio_samples.loc[:,'spectrogram'].apply(lambda x: x.shape[0])
# audio_samples.to_pickle('outputs/{}-spectrogram.pkl'.format(audio_group))
def _float_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
@ -111,17 +118,46 @@ def create_spectrogram_tfrecords(audio_group='audio'):
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
writer = tf.python_io.TFRecordWriter(output_path)
for sample in audio_samples:
example = tf.train.Example(features=tf.train.Features(
feature={
'label': _int64_feature([label]),
'path': _bytes_feature([image_path]),
'instance' : _bytes_feature([instance_id])
}
))
writer.write(example.SerializeToString())
writer = tf.python_io.TFRecordWriter('./outputs/' + audio_group + '.tfrecords')
# audio_samples = audio_samples[:100]
for (w, word_group) in audio_samples.groupby(audio_samples['word']):
g = word_group.reset_index()
g['spectrogram'] = apply_by_multiprocessing(g['file_path'],generate_aiff_spectrogram)
sample_right = g.loc[audio_samples['variant'] == 'low']
sample_wrong = g.loc[audio_samples['variant'] == 'medium']
same, diff = siamese_pairs(sample_right, sample_wrong)
groups = [([0,1],same),([1,0],diff)]
for (output,group) in groups:
for sample1,sample2 in group:
spectro1,spectro2 = sample1['spectrogram'],sample2['spectrogram']
spec_n1,spec_n2 = spectro1.shape[0],spectro2.shape[0]
spec_w1,spec_w2 = spectro1.shape[1],spectro2.shape[1]
spec1,spec2 = spectro1.reshape(-1),spectro2.reshape(-1)
example = tf.train.Example(features=tf.train.Features(
feature={
'word': _bytes_feature([w.encode('utf-8')]),
'phoneme1': _bytes_feature([sample1['phonemes'].encode('utf-8')]),
'phoneme2': _bytes_feature([sample2['phonemes'].encode('utf-8')]),
'voice1': _bytes_feature([sample1['voice'].encode('utf-8')]),
'voice2': _bytes_feature([sample2['voice'].encode('utf-8')]),
'language': _bytes_feature([sample1['language'].encode('utf-8')]),
'rate1':_int64_feature([sample1['rate']]),
'rate2':_int64_feature([sample2['rate']]),
'variant1': _bytes_feature([sample1['variant'].encode('utf-8')]),
'variant2': _bytes_feature([sample2['variant'].encode('utf-8')]),
'file1': _bytes_feature([sample1['file'].encode('utf-8')]),
'file2': _bytes_feature([sample2['file'].encode('utf-8')]),
'spec1':_float_feature(spec1),
'spec2':_float_feature(spec2),
'spec_n1':_int64_feature([spec_n1]),
'spec_w1':_int64_feature([spec_w1]),
'spec_n2':_int64_feature([spec_n2]),
'spec_w2':_int64_feature([spec_w2]),
'output':_int64_feature(output)
}
))
writer.write(example.SerializeToString())
writer.close()
def create_tagged_data(audio_samples):
@ -177,7 +213,8 @@ def speech_model_data():
if __name__ == '__main__':
# sunflower_pairs_data()
# create_spectrogram_data()
create_spectrogram_data('story_words')
# create_spectrogram_data('story_words')
create_spectrogram_tfrecords('story_words')
# create_padded_spectrogram()
# create_speech_pairs_data()
# print(speech_model_data())