Compare commits

..

No commits in common. "ec7303223c5ca3426df2cecb41255d20ab082a41" and "8f793168938da38c567e4121e1f05ceffef7006a" have entirely different histories.

5 changed files with 40 additions and 147 deletions

View File

@ -1,11 +0,0 @@
import pandas as pd
def fix_csv(collection_name = 'test'):
seg_data = pd.read_csv('./outputs/'+collection_name+'.csv',names=['phrase','filename'
,'start_phoneme','end_phoneme','start_time','end_time'])
seg_data.to_csv('./outputs/'+collection_name+'.fixed.csv')
def segment_data_gen(collection_name = 'test'):
# collection_name = 'test'
seg_data = pd.read_csv('./outputs/'+collection_name+'.fixed.csv',index_col=0)

View File

@ -1,108 +0,0 @@
from __future__ import absolute_import
from __future__ import print_function
import numpy as np
from keras.models import Model,load_model,model_from_yaml
from keras.layers import Input,Concatenate,Lambda, BatchNormalization, Dropout
from keras.layers import Dense, LSTM, Bidirectional, GRU
from keras.losses import categorical_crossentropy
from keras.utils import to_categorical
from keras.optimizers import RMSprop
from keras.callbacks import TensorBoard, ModelCheckpoint
from keras import backend as K
from keras.utils import plot_model
from speech_tools import create_dir,step_count
from speech_data import segment_data_gen
def accuracy(y_true, y_pred):
'''Compute classification accuracy with a fixed threshold on distances.
'''
return K.mean(K.equal(y_true, K.cast(y_pred > 0.5, y_true.dtype)))
def dense_classifier(processed):
conc_proc = Concatenate()(processed)
d1 = Dense(64, activation='relu')(conc_proc)
# dr1 = Dropout(0.1)(d1)
# d2 = Dense(128, activation='relu')(d1)
d3 = Dense(8, activation='relu')(d1)
# dr2 = Dropout(0.1)(d2)
return Dense(2, activation='softmax')(d3)
def segment_model(input_dim):
inp = Input(shape=input_dim)
# ls0 = LSTM(512, return_sequences=True)(inp)
ls1 = LSTM(128, return_sequences=True)(inp)
ls2 = LSTM(64, return_sequences=True)(ls1)
# ls3 = LSTM(32, return_sequences=True)(ls2)
ls4 = LSTM(32)(ls2)
d1 = Dense(64, activation='relu')(ls4)
d3 = Dense(8, activation='relu')(d1)
oup = Dense(2, activation='softmax')(d3)
return Model(inp, oup)
def write_model_arch(mod,mod_file):
model_f = open(mod_file,'w')
model_f.write(mod.to_yaml())
model_f.close()
def load_model_arch(mod_file):
model_f = open(mod_file,'r')
mod = model_from_yaml(model_f.read())
model_f.close()
return mod
def train_segment(collection_name = 'test'):
batch_size = 128
model_dir = './models/segment/'+collection_name
create_dir(model_dir)
log_dir = './logs/segment/'+collection_name
create_dir(log_dir)
tr_gen_fn = segment_data_gen()
tr_gen = tr_gen_fn()
input_dim = (n_step, n_features)
model = segment_model(input_dim)
plot_model(model,show_shapes=True, to_file=model_dir+'/model.png')
tb_cb = TensorBoard(
log_dir=log_dir,
histogram_freq=1,
batch_size=32,
write_graph=True,
write_grads=True,
write_images=True,
embeddings_freq=0,
embeddings_layer_names=None,
embeddings_metadata=None)
cp_file_fmt = model_dir+'/siamese_speech_model-{epoch:02d}-epoch-{val_loss:0.2f}\
-acc.h5'
cp_cb = ModelCheckpoint(
cp_file_fmt,
monitor='val_loss',
verbose=0,
save_best_only=True,
save_weights_only=True,
mode='auto',
period=1)
# train
rms = RMSprop()
model.compile(loss=categorical_crossentropy, optimizer=rms, metrics=[accuracy])
write_model_arch(model,model_dir+'/siamese_speech_model_arch.yaml')
epoch_n_steps = step_count(n_records,batch_size)
model.fit_generator(tr_gen
, epochs=1000
, steps_per_epoch=epoch_n_steps
, validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y)
, max_queue_size=32
, callbacks=[tb_cb, cp_cb])
model.save(model_dir+'/speech_segment_model-final.h5')
y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]])
te_acc = compute_accuracy(te_y, y_pred)
print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))
if __name__ == '__main__':
train_segment('test')

View File

@ -3,8 +3,7 @@ from __future__ import print_function
import numpy as np
from speech_data import read_siamese_tfrecords_generator
from keras.models import Model,load_model,model_from_yaml
from keras.layers import Input,Concatenate,Lambda, BatchNormalization, Dropout
from keras.layers import Dense, LSTM, Bidirectional, GRU
from keras.layers import Input, Dense, Dropout, LSTM, Lambda, Concatenate, Bidirectional
from keras.losses import categorical_crossentropy
from keras.utils import to_categorical
from keras.optimizers import RMSprop

View File

@ -5,35 +5,36 @@ import matplotlib.pyplot as plt
import seaborn as sns
sns.set() # Use seaborn's default style to make graphs more pretty
def pm_snd(sample_file):
# sample_file = 'inputs/self-apple/apple-low1.aiff'
samples, samplerate, _ = snd.read(sample_file)
return pm.Sound(values=samples,sampling_frequency=samplerate)
def pitch_array(sample_file='outputs/audio/sunflowers-Victoria-180-normal-870.aiff'):
sample_sound = pm_snd(sample_file)
samples, samplerate, _ = snd.read(sample_file)
sample_sound = pm.Sound(values=samples,sampling_frequency=samplerate)
sample_pitch = sample_sound.to_pitch()
return sample_pitch.to_matrix().as_array()
def intensity_array(sample_file='outputs/audio/sunflowers-Victoria-180-normal-870.aiff'):
sample_sound = pm_snd(sample_file)
sample_file='outputs/audio/sunflowers-Victoria-180-normal-870.aiff'
samples, samplerate, _ = snd.read(sample_file)
sample_sound = pm.Sound(values=samples,sampling_frequency=samplerate)
sample_intensity = sample_sound.to_mfcc()
sample_intensity.as_array().shape
return sample_pitch.to_matrix().as_array()
def compute_mfcc(sample_file='outputs/audio/sunflowers-Victoria-180-normal-870.aiff'):
sample_sound = pm_snd(sample_file)
# sample_file='outputs/audio/sunflowers-Victoria-180-normal-870.aiff'
samples, samplerate, _ = snd.read(sample_file)
sample_sound = pm.Sound(values=samples,sampling_frequency=samplerate)
sample_mfcc = sample_sound.to_mfcc()
# sample_mfcc.to_array().shape
return sample_mfcc.to_array()
def compute_formants(sample_file='outputs/audio/sunflowers-Victoria-180-normal-870.aiff'):
sample_file='outputs/audio/sunflowers-Victoria-180-normal-870.aiff'
sample_sound = pm_snd(sample_file)
samples, samplerate, _ = snd.read(sample_file)
sample_sound = pm.Sound(values=samples,sampling_frequency=samplerate)
sample_formant = sample_sound.to_formant_burg()
# sample_formant.x_bins()
return sample_formant.x_bins()
sample_formant.x_bins()
# sample_mfcc.to_array().shape
return sample_mfcc.to_array()
def draw_spectrogram(spectrogram, dynamic_range=70):
X, Y = spectrogram.x_grid(), spectrogram.y_grid()
@ -61,18 +62,10 @@ def draw_pitch(pitch):
plt.ylim(0, pitch.ceiling)
plt.ylabel("pitch [Hz]")
def draw_formants(formant):
# Extract selected pitch contour, and
# replace unvoiced samples by NaN to not plot
formant_values = formant.to_matrix().values
pitch_values[pitch_values==0] = np.nan
plt.plot(pitch.xs(), pitch_values, linewidth=3, color='w')
plt.plot(pitch.xs(), pitch_values, linewidth=1)
plt.grid(False)
plt.ylim(0, pitch.ceiling)
plt.ylabel("Formants [val]")
def pm_snd(sample_file):
# sample_file = 'inputs/self-apple/apple-low1.aiff'
samples, samplerate, _ = snd.read(sample_file)
return pm.Sound(values=samples,sampling_frequency=samplerate)
def plot_sample_raw(sample_file='outputs/audio/sunflowers-Victoria-180-normal-870.aiff'):
# %matplotlib inline
# sample_file='outputs/audio/sunflowers-Victoria-180-normal-870.aiff
@ -116,8 +109,28 @@ def plot_sample_pitch(sample_file='outputs/audio/sunflowers-Victoria-180-normal-
if __name__ == '__main__':
mom_snd = pm_snd('outputs/test/moms_are_engineers-7608.aiff')
# sunflowers_vic_180_norm = pitch_array('outputs/audio/sunflowers-Victoria-180-normal-870.aiff')
# sunflowers_fred_180_norm = pitch_array('outputs/audio/sunflowers-Fred-180-normal-6515.aiff')
# sunflowers_vic_180_norm_mfcc = compute_mfcc('outputs/audio/sunflowers-Victoria-180-normal-870.aiff')
# fred_180_norm_mfcc = compute_mfcc('outputs/audio/sunflowers-Fred-180-normal-6515.aiff')
# alex_mfcc = compute_mfcc('outputs/audio/sunflowers-Alex-180-normal-4763.aiff')
# # # sunflowers_vic_180_norm.shape
# # # sunflowers_fred_180_norm.shape
# # alex_mfcc.shape
# # sunflowers_vic_180_norm_mfcc.shape
# # sunflowers_fred_180_norm_mfcc.shape
# from speech_spectrum import generate_aiff_spectrogram
# vic_spec = generate_aiff_spectrogram('outputs/audio/sunflowers-Victoria-180-normal-870.aiff')
# alex_spec = generate_aiff_spectrogram('outputs/audio/sunflowers-Alex-180-normal-4763.aiff')
# alex150spec = generate_aiff_spectrogram('outputs/audio/sunflowers-Alex-150-normal-589.aiff')
# vic_spec.shape
# alex_spec.shape
# alex150spec.shape
# alex_mfcc.shape
# fred_180_norm_mfcc.shape
plot_sample_pitch('outputs/audio/sunflowers-Victoria-180-normal-870.aiff')
plot_sample_pitch('inputs/self-apple/apple-low1.aiff')
plot_sample_pitch('inputs/self-apple/apple-low2.aiff')
plot_sample_pitch('inputs/self-apple/apple-medium1.aiff')
# pm.SoundFileFormat
# pm.Pitch.get_number_of_frames()

View File

@ -184,7 +184,7 @@ def story_texts():
def generate_audio():
synthQ = SynthesizerQueue()
phrases = random.sample(story_texts(), 100) # story_texts()
phrases = random.sample(story_texts(), 5) # story_texts()
f = open(csv_dest_file, 'w')
s_csv_w = csv.writer(f, quoting=csv.QUOTE_MINIMAL)
i = 0