Compare commits

..

No commits in common. "c81a7b4468b13d0f51e1ecc85742b5e6d079feb2" and "7d94ddc2ae6e5a1f7ad1efb2030fa3d3640dbbb6" have entirely different histories.

4 changed files with 70 additions and 37 deletions

View File

@ -40,7 +40,6 @@ parso==0.1.0
partd==0.3.8
pexpect==4.2.1
pickleshare==0.7.4
pkg-resources==0.0.0
progressbar2==3.34.3
prompt-toolkit==1.0.15
protobuf==3.4.0
@ -58,7 +57,6 @@ pyzmq==16.0.2
qtconsole==4.3.1
scikit-learn==0.19.0
scipy==0.19.1
seaborn==0.8.1
simplegeneric==0.8.1
six==1.11.0
sortedcontainers==1.5.7

View File

@ -21,21 +21,10 @@ def siamese_pairs(rightGroup, wrongGroup):
group2 = [r for (i, r) in wrongGroup.iterrows()]
rightWrongPairs = [(g1, g2) for g2 in group2 for g1 in group1]+[(g2, g1) for g2 in group2 for g1 in group1]
rightRightPairs = [i for i in itertools.permutations(group1, 2)]#+[i for i in itertools.combinations(group2, 2)]
def filter_criteria(s1,s2):
same = s1['variant'] == s2['variant']
phon_same = s1['phonemes'] == s2['phonemes']
voice_diff = s1['voice'] != s2['voice']
if not same and phon_same:
return False
if same and not voice_diff:
return False
return True
validRWPairs = [i for i in rightWrongPairs if filter_criteria(*i)]
validRRPairs = [i for i in rightRightPairs if filter_criteria(*i)]
random.shuffle(validRWPairs)
random.shuffle(validRRPairs)
# random.shuffle(rightWrongPairs)
# random.shuffle(rightRightPairs)
# return rightRightPairs[:10],rightWrongPairs[:10]
return validRWPairs[:32],validRRPairs[:32]
return rightRightPairs[:32],rightWrongPairs[:32]
def _float_feature(value):
@ -52,7 +41,7 @@ def create_spectrogram_tfrecords(audio_group='audio',sample_count=0,train_test_r
http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/
http://www.machinelearninguru.com/deep_learning/tensorflow/basics/tfrecord/tfrecord.html
'''
audio_samples = pd.read_csv( './outputs/' + audio_group + '.fixed.csv',index_col=0)
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv',index_col=0)
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
n_records,n_spec,n_features = 0,0,0
@ -71,6 +60,13 @@ def create_spectrogram_tfrecords(audio_group='audio',sample_count=0,train_test_r
for (output,group) in groups:
group_prog = tqdm(group,desc='Writing Spectrogram')
for sample1,sample2 in group_prog:
same = sample1['variant'] == sample2['variant']
phon_same = sample1['phonemes'] == sample2['phonemes']
voice_diff = sample1['voice'] != sample2['voice']
if not same and phon_same:
continue
if same and not voice_diff:
continue
group_prog.set_postfix(output=output
,var1=sample1['variant']
,var2=sample2['variant'])
@ -209,19 +205,19 @@ def record_generator_count(records_file):
return record_iterator,count
def fix_csv(audio_group='audio'):
audio_csv_lines = open('./outputs/' + audio_group + '.csv','r').readlines()
audio_csv_lines = open('./outputs/' + audio_group + '.csv.orig','r').readlines()
audio_csv_data = [i.strip().split(',') for i in audio_csv_lines]
proper_rows = [i for i in audio_csv_data if len(i) == 7]
with open('./outputs/' + audio_group + '.fixed.csv','w') as fixed_csv:
with open('./outputs/' + audio_group + '.csv','w') as fixed_csv:
fixed_csv_w = csv.writer(fixed_csv, quoting=csv.QUOTE_MINIMAL)
fixed_csv_w.writerows(proper_rows)
audio_samples = pd.read_csv( './outputs/' + audio_group + '.fixed.csv'
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv'
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file'])
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists)
audio_samples = audio_samples[audio_samples['file_exists'] == True]
audio_samples = audio_samples.drop(['file_path','file_exists'],axis=1).reset_index(drop=True)
audio_samples.to_csv('./outputs/' + audio_group + '.fixed.csv')
audio_samples.to_csv('./outputs/' + audio_group + '.csv')
def convert_old_audio():
audio_samples = pd.read_csv( './outputs/audio.csv.old'
@ -247,8 +243,7 @@ if __name__ == '__main__':
# create_spectrogram_tfrecords('audio',sample_count=100)
# create_spectrogram_tfrecords('story_all',sample_count=25)
# fix_csv('story_words_test')
#fix_csv('story_phrases')
create_spectrogram_tfrecords('story_phrases',sample_count=10,train_test_ratio=0.1)
create_spectrogram_tfrecords('story_words_test',sample_count=100,train_test_ratio=0.0)
# create_spectrogram_tfrecords('audio',sample_count=50)
# read_siamese_tfrecords_generator('audio')
# padd_zeros_siamese_tfrecords('audio')

View File

@ -1,28 +1,48 @@
from __future__ import absolute_import
from __future__ import print_function
import numpy as np
# from speech_data import speech_model_data
from speech_data import read_siamese_tfrecords_generator
from keras.models import Model,load_model,model_from_yaml
from keras.layers import Input, Dense, Dropout, LSTM, Lambda, Concatenate, Bidirectional
from keras.layers import Input, Dense, Dropout, LSTM, Lambda, Concatenate
from keras.losses import categorical_crossentropy
# from keras.losses import binary_crossentropy
from keras.utils import to_categorical
# from keras.utils.np_utils import to_categorical
from keras.optimizers import RMSprop
from keras.callbacks import TensorBoard, ModelCheckpoint
from keras import backend as K
from speech_tools import create_dir,step_count
# def euclidean_distance(vects):
# x, y = vects
# return K.sqrt(
# K.maximum(K.sum(K.square(x - y), axis=1, keepdims=True), K.epsilon()))
#
#
# def eucl_dist_output_shape(shapes):
# shape1, shape2 = shapes
# return (shape1[0], 1)
#
#
# def contrastive_loss(y_true, y_pred):
# '''Contrastive loss from Hadsell-et-al.'06
# http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
# '''
# return K.mean(y_true * K.square(y_pred) +
# (1 - y_true) * K.square(K.maximum(1 - y_pred, 0)))
def create_base_rnn_network(input_dim):
'''Base network to be shared (eq. to feature extraction).
'''
inp = Input(shape=input_dim)
# ls0 = LSTM(512, return_sequences=True)(inp)
ls1 = Bidirectional(LSTM(128, return_sequences=True))(inp)
ls1 = LSTM(256, return_sequences=True)(inp)
ls2 = LSTM(128, return_sequences=True)(ls1)
# ls3 = LSTM(32, return_sequences=True)(ls2)
ls4 = LSTM(64)(ls2)
# d1 = Dense(128, activation='relu')(ls4)
#d2 = Dense(64, activation='relu')(ls2)
d2 = Dense(64, activation='relu')(ls4)
return Model(inp, ls4)
@ -48,6 +68,7 @@ def dense_classifier(processed):
return Dense(2, activation='softmax')(d3)
def siamese_model(input_dim):
# input_dim = (15, 1654)
base_network = create_base_rnn_network(input_dim)
input_a = Input(shape=input_dim)
input_b = Input(shape=input_dim)
@ -55,6 +76,10 @@ def siamese_model(input_dim):
processed_b = base_network(input_b)
final_output = dense_classifier([processed_a,processed_b])
model = Model([input_a, input_b], final_output)
# distance = Lambda(
# euclidean_distance,
# output_shape=eucl_dist_output_shape)([processed_a, processed_b])
# model = Model([input_a, input_b], distance)
return model
def write_model_arch(mod,mod_file):
@ -69,13 +94,17 @@ def load_model_arch(mod_file):
return mod
def train_siamese(audio_group = 'audio'):
batch_size = 128
# the data, shuffled and split between train and test sets
# tr_pairs, te_pairs, tr_y_e, te_y_e = speech_model_data()
batch_size = 256
model_dir = './models/'+audio_group
create_dir(model_dir)
log_dir = './logs/'+audio_group
create_dir(log_dir)
tr_gen_fn,te_pairs,te_y,n_step,n_features,n_records = read_siamese_tfrecords_generator(audio_group,batch_size=batch_size,test_size=batch_size)
tr_gen = tr_gen_fn()
# tr_y = to_categorical(tr_y_e, num_classes=2)
# te_y = to_categorical(te_y_e, num_classes=2)
input_dim = (n_step, n_features)
model = siamese_model(input_dim)
@ -102,17 +131,29 @@ def train_siamese(audio_group = 'audio'):
mode='auto',
period=1)
# train
rms = RMSprop()
rms = RMSprop()#lr=0.001
model.compile(loss=categorical_crossentropy, optimizer=rms, metrics=[accuracy])
write_model_arch(model,model_dir+'/siamese_speech_model_arch.yaml')
# model.fit(
# [tr_pairs[:, 0], tr_pairs[:, 1]],
# tr_y,
# batch_size=128,
# epochs=100,
# validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y),
# callbacks=[tb_cb, cp_cb])
epoch_n_steps = step_count(n_records,batch_size)
model.fit_generator(tr_gen
, epochs=1000
, steps_per_epoch=epoch_n_steps
, validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y)
# ,use_multiprocessing=True, workers=1
, max_queue_size=32
, callbacks=[tb_cb, cp_cb])
model.save(model_dir+'/siamese_speech_model-final.h5')
# compute final accuracy on training and test sets
# y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]])
# tr_acc = compute_accuracy(tr_y, y_pred)
# print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc))
y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]])
te_acc = compute_accuracy(te_y, y_pred)
@ -121,4 +162,5 @@ def train_siamese(audio_group = 'audio'):
if __name__ == '__main__':
train_siamese('story_phrases')
train_siamese('story_words_test')
# train_siamese('audio')

View File

@ -12,7 +12,6 @@ import tensorflow as tf
import csv
from tqdm import tqdm
from speech_data import padd_zeros
import seaborn as sns
def predict_recording_with(m,sample_size=15):
spec1 = record_spectrogram(n_sec=1.4)
@ -36,7 +35,6 @@ def evaluate_siamese(records_file,audio_group='audio',weights = 'siamese_speech_
print('evaluating {}...'.format(records_file))
model = load_model_arch(arch_file)
# model = siamese_model((n_spec, n_features))
n_spec = 422
model.load_weights(weight_file)
record_iterator,records_count = record_generator_count(records_file)
total,same_success,diff_success,skipped,same_failed,diff_failed = 0,0,0,0,0,0
@ -132,22 +130,22 @@ def play_results(audio_group='audio'):
def visualize_results(audio_group='audio'):
# %matplotlib inline
audio_group = 'story_phrases'
audio_group = 'story_words'
result = pd.read_csv('./outputs/' + audio_group + '.results.csv',index_col=0)
result.groupby('success').size().plot(kind='bar')
result.describe(include=['object'])
failed = result[result['success'] == False]
same_failed = failed[failed['variant1'] == failed['variant2']]
diff_failed = failed[failed['variant1'] != failed['variant2']]
result.groupby(['voice1','voice2']).size()
same_failed[same_failed['voice1'] != same_failed['voice2']]
diff_failed[diff_failed['voice1'] != diff_failed['voice2']]
if __name__ == '__main__':
# evaluate_siamese('./outputs/story_words_test.train.tfrecords',audio_group='story_words.gpu',weights ='siamese_speech_model-58-epoch-0.00-acc.h5')
# evaluate_siamese('./outputs/story_words_test.train.tfrecords',audio_group='story_words',weights ='siamese_speech_model-712-epoch-0.00-acc.h5')
# evaluate_siamese('./outputs/story_words.test.tfrecords',audio_group='story_words',weights ='siamese_speech_model-675-epoch-0.00-acc.h5')
evaluate_siamese('./outputs/story_phrases.test.tfrecords',audio_group='story_phrases',weights ='siamese_speech_model-329-epoch-0.00-acc.h5')
# play_results('story_words')
visualize_results('story_words.gpu')
visualize_results('story_words')
# test_with('rand_edu')
# sunflower_data,sunflower_result = get_word_pairs_data('sweater',15)
# print(np.argmax(model.predict([sunflower_data[:, 0], sunflower_data[:, 1]]),axis=1))