Compare commits
8 Commits
52bbb69c65
...
f44665e9b2
| Author | SHA1 | Date |
|---|---|---|
|
|
f44665e9b2 | |
|
|
cc4fbe45b9 | |
|
|
8d550c58cc | |
|
|
240ecb3f27 | |
|
|
05242d5991 | |
|
|
fea9184aec | |
|
|
a6543491f8 | |
|
|
d387922f7d |
|
|
@ -156,7 +156,7 @@ def create_segments_tfrecords(collection_name='story_test_segments',sample_count
|
||||||
f_bounds = [spec_frame(phrase_spec,b) for b in ph_bounds]
|
f_bounds = [spec_frame(phrase_spec,b) for b in ph_bounds]
|
||||||
valid_bounds = [i for i in f_bounds if 0 < i < spec_n]
|
valid_bounds = [i for i in f_bounds if 0 < i < spec_n]
|
||||||
b_frames = np.asarray(valid_bounds)
|
b_frames = np.asarray(valid_bounds)
|
||||||
# print(spec_n,b_frames)
|
if len(b_frames) > 0:
|
||||||
result[b_frames] = 1
|
result[b_frames] = 1
|
||||||
nonlocal n_records,n_spec,n_features
|
nonlocal n_records,n_spec,n_features
|
||||||
n_spec = max([n_spec,spec_n])
|
n_spec = max([n_spec,spec_n])
|
||||||
|
|
@ -178,9 +178,10 @@ def create_segments_tfrecords(collection_name='story_test_segments',sample_count
|
||||||
|
|
||||||
word_groups = [i for i in audio_samples.groupby('phrase')]
|
word_groups = [i for i in audio_samples.groupby('phrase')]
|
||||||
wg_sampled = reservoir_sample(word_groups,sample_count) if sample_count > 0 else word_groups
|
wg_sampled = reservoir_sample(word_groups,sample_count) if sample_count > 0 else word_groups
|
||||||
|
# write_samples(word_groups,'all')
|
||||||
tr_audio_samples,te_audio_samples = train_test_split(wg_sampled,test_size=train_test_ratio)
|
tr_audio_samples,te_audio_samples = train_test_split(wg_sampled,test_size=train_test_ratio)
|
||||||
write_samples(tr_audio_samples,'train')
|
write_samples(tr_audio_samples,'train')
|
||||||
# write_samples(te_audio_samples,'test')
|
write_samples(te_audio_samples,'test')
|
||||||
const_file = './outputs/segments/'+collection_name+'/constants.pkl'
|
const_file = './outputs/segments/'+collection_name+'/constants.pkl'
|
||||||
pickle.dump((n_spec,n_features,n_records),open(const_file,'wb'))
|
pickle.dump((n_spec,n_features,n_records),open(const_file,'wb'))
|
||||||
|
|
||||||
|
|
@ -255,9 +256,9 @@ if __name__ == '__main__':
|
||||||
# plot_random_phrases()
|
# plot_random_phrases()
|
||||||
# fix_csv('story_test_segments')
|
# fix_csv('story_test_segments')
|
||||||
# plot_segments('story_test_segments')
|
# plot_segments('story_test_segments')
|
||||||
# fix_csv('story_phrases')
|
# fix_csv('story_words')
|
||||||
# pass
|
# pass
|
||||||
create_segments_tfrecords('story_phrases', sample_count=100)
|
create_segments_tfrecords('story_words.30', sample_count=36,train_test_ratio=0.1)
|
||||||
# record_generator,input_data,output_data,copy_read_consts = read_segments_tfrecords_generator('story_test')
|
# record_generator,input_data,output_data,copy_read_consts = read_segments_tfrecords_generator('story_test')
|
||||||
# tr_gen = record_generator()
|
# tr_gen = record_generator()
|
||||||
# for i in tr_gen:
|
# for i in tr_gen:
|
||||||
|
|
|
||||||
|
|
@ -4,10 +4,10 @@ import numpy as np
|
||||||
from keras.models import Model,load_model,model_from_yaml
|
from keras.models import Model,load_model,model_from_yaml
|
||||||
from keras.layers import Input,Concatenate,Lambda, Reshape, Dropout
|
from keras.layers import Input,Concatenate,Lambda, Reshape, Dropout
|
||||||
from keras.layers import Dense,Conv2D, LSTM, Bidirectional, GRU
|
from keras.layers import Dense,Conv2D, LSTM, Bidirectional, GRU
|
||||||
from keras.layers import BatchNormalization
|
from keras.layers import BatchNormalization,Activation
|
||||||
from keras.losses import categorical_crossentropy
|
from keras.losses import categorical_crossentropy
|
||||||
from keras.utils import to_categorical
|
from keras.utils import to_categorical
|
||||||
from keras.optimizers import RMSprop
|
from keras.optimizers import RMSprop,Adadelta,Adagrad,Adam,Nadam
|
||||||
from keras.callbacks import TensorBoard, ModelCheckpoint
|
from keras.callbacks import TensorBoard, ModelCheckpoint
|
||||||
from keras import backend as K
|
from keras import backend as K
|
||||||
from keras.utils import plot_model
|
from keras.utils import plot_model
|
||||||
|
|
@ -36,30 +36,38 @@ def ctc_lambda_func(args):
|
||||||
return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
|
return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
|
||||||
|
|
||||||
def segment_model(input_dim):
|
def segment_model(input_dim):
|
||||||
# input_dim = (100,100,1)
|
|
||||||
inp = Input(shape=input_dim)
|
inp = Input(shape=input_dim)
|
||||||
cnv1 = Conv2D(filters=32, kernel_size=(5,9))(inp)
|
cnv1 = Conv2D(filters=32, kernel_size=(5,9))(inp)
|
||||||
cnv2 = Conv2D(filters=1, kernel_size=(5,9))(cnv1)
|
cnv2 = Conv2D(filters=1, kernel_size=(5,9))(cnv1)
|
||||||
dr_cnv2 = Dropout(rate=0.95)(cnv2)
|
dr_cnv2 = Dropout(rate=0.95)(cnv2)
|
||||||
# dr_cnv2
|
|
||||||
cn_rnn_dim = (dr_cnv2.shape[1].value,dr_cnv2.shape[2].value)
|
cn_rnn_dim = (dr_cnv2.shape[1].value,dr_cnv2.shape[2].value)
|
||||||
r_dr_cnv2 = Reshape(target_shape=cn_rnn_dim)(dr_cnv2)
|
r_dr_cnv2 = Reshape(target_shape=cn_rnn_dim)(dr_cnv2)
|
||||||
b_gr1 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(r_dr_cnv2)
|
b_gr1 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(r_dr_cnv2)
|
||||||
# b_gr1
|
|
||||||
b_gr2 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(b_gr1)
|
b_gr2 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(b_gr1)
|
||||||
b_gr3 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(b_gr2)
|
b_gr3 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(b_gr2)
|
||||||
# b_gr3
|
|
||||||
oup = Dense(2, activation='softmax')(b_gr3)
|
oup = Dense(2, activation='softmax')(b_gr3)
|
||||||
# oup
|
|
||||||
return Model(inp, oup)
|
return Model(inp, oup)
|
||||||
|
|
||||||
def simple_segment_model(input_dim):
|
def simple_segment_model(input_dim):
|
||||||
inp = Input(shape=input_dim)
|
inp = Input(shape=input_dim)
|
||||||
b_gr1 = Bidirectional(GRU(256, return_sequences=True),merge_mode='sum')(inp)
|
b_gr1 = Bidirectional(LSTM(32, return_sequences=True))(inp)
|
||||||
# b_gr1
|
b_gr1 = Bidirectional(LSTM(16, return_sequences=True),merge_mode='sum')(b_gr1)
|
||||||
b_gr2 = Bidirectional(GRU(64, return_sequences=True),merge_mode='sum')(b_gr1)
|
b_gr1 = LSTM(1, return_sequences=True,activation='softmax')(b_gr1)
|
||||||
b_gr3 = Bidirectional(GRU(1, return_sequences=True),merge_mode='sum')(b_gr2)
|
# b_gr1 = LSTM(4, return_sequences=True)(b_gr1)
|
||||||
oup = Reshape(target_shape=(input_dim[0],))(b_gr3)
|
# b_gr1 = LSTM(2, return_sequences=True)(b_gr1)
|
||||||
|
# bn_b_gr1 = BatchNormalization(momentum=0.98)(b_gr1)
|
||||||
|
# b_gr2 = GRU(64, return_sequences=True)(b_gr1)
|
||||||
|
# bn_b_gr2 = BatchNormalization(momentum=0.98)(b_gr2)
|
||||||
|
# d1 = Dense(32)(b_gr2)
|
||||||
|
# bn_d1 = BatchNormalization(momentum=0.98)(d1)
|
||||||
|
# bn_da1 = Activation('relu')(bn_d1)
|
||||||
|
# d2 = Dense(8)(bn_da1)
|
||||||
|
# bn_d2 = BatchNormalization(momentum=0.98)(d2)
|
||||||
|
# bn_da2 = Activation('relu')(bn_d2)
|
||||||
|
# d3 = Dense(1)(b_gr1)
|
||||||
|
# # bn_d3 = BatchNormalization(momentum=0.98)(d3)
|
||||||
|
# bn_da3 = Activation('softmax')(d3)
|
||||||
|
oup = Reshape(target_shape=(input_dim[0],))(b_gr1)
|
||||||
return Model(inp, oup)
|
return Model(inp, oup)
|
||||||
|
|
||||||
def write_model_arch(mod,mod_file):
|
def write_model_arch(mod,mod_file):
|
||||||
|
|
@ -75,7 +83,7 @@ def load_model_arch(mod_file):
|
||||||
|
|
||||||
def train_segment(collection_name = 'test',resume_weights='',initial_epoch=0):
|
def train_segment(collection_name = 'test',resume_weights='',initial_epoch=0):
|
||||||
# collection_name = 'story_test'
|
# collection_name = 'story_test'
|
||||||
batch_size = 64
|
batch_size = 128
|
||||||
# batch_size = 4
|
# batch_size = 4
|
||||||
model_dir = './models/segment/'+collection_name
|
model_dir = './models/segment/'+collection_name
|
||||||
create_dir(model_dir)
|
create_dir(model_dir)
|
||||||
|
|
@ -111,8 +119,8 @@ def train_segment(collection_name = 'test',resume_weights='',initial_epoch=0):
|
||||||
mode='auto',
|
mode='auto',
|
||||||
period=1)
|
period=1)
|
||||||
# train
|
# train
|
||||||
rms = RMSprop()
|
opt = RMSprop()
|
||||||
model.compile(loss=categorical_crossentropy, optimizer=rms, metrics=[accuracy])
|
model.compile(loss=categorical_crossentropy, optimizer=opt, metrics=[accuracy])
|
||||||
write_model_arch(model,model_dir+'/speech_segment_model_arch.yaml')
|
write_model_arch(model,model_dir+'/speech_segment_model_arch.yaml')
|
||||||
epoch_n_steps = step_count(n_records,batch_size)
|
epoch_n_steps = step_count(n_records,batch_size)
|
||||||
if resume_weights != '':
|
if resume_weights != '':
|
||||||
|
|
@ -133,4 +141,4 @@ def train_segment(collection_name = 'test',resume_weights='',initial_epoch=0):
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# pass
|
# pass
|
||||||
train_segment('story_phrases','./models/segment/story_phrases.1000/speech_segment_model-final.h5',1001)
|
train_segment('story_words')#,'./models/segment/story_phrases.1000/speech_segment_model-final.h5',1001)
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue