1. fixed softmax output and overfit the model for small sample
2. updated to run on complete datamaster
parent
cc4fbe45b9
commit
f44665e9b2
|
|
@ -258,7 +258,7 @@ if __name__ == '__main__':
|
||||||
# plot_segments('story_test_segments')
|
# plot_segments('story_test_segments')
|
||||||
# fix_csv('story_words')
|
# fix_csv('story_words')
|
||||||
# pass
|
# pass
|
||||||
create_segments_tfrecords('story_words.3', sample_count=3,train_test_ratio=0.33)
|
create_segments_tfrecords('story_words.30', sample_count=36,train_test_ratio=0.1)
|
||||||
# record_generator,input_data,output_data,copy_read_consts = read_segments_tfrecords_generator('story_test')
|
# record_generator,input_data,output_data,copy_read_consts = read_segments_tfrecords_generator('story_test')
|
||||||
# tr_gen = record_generator()
|
# tr_gen = record_generator()
|
||||||
# for i in tr_gen:
|
# for i in tr_gen:
|
||||||
|
|
|
||||||
|
|
@ -7,7 +7,7 @@ from keras.layers import Dense,Conv2D, LSTM, Bidirectional, GRU
|
||||||
from keras.layers import BatchNormalization,Activation
|
from keras.layers import BatchNormalization,Activation
|
||||||
from keras.losses import categorical_crossentropy
|
from keras.losses import categorical_crossentropy
|
||||||
from keras.utils import to_categorical
|
from keras.utils import to_categorical
|
||||||
from keras.optimizers import RMSprop
|
from keras.optimizers import RMSprop,Adadelta,Adagrad,Adam,Nadam
|
||||||
from keras.callbacks import TensorBoard, ModelCheckpoint
|
from keras.callbacks import TensorBoard, ModelCheckpoint
|
||||||
from keras import backend as K
|
from keras import backend as K
|
||||||
from keras.utils import plot_model
|
from keras.utils import plot_model
|
||||||
|
|
@ -50,20 +50,24 @@ def segment_model(input_dim):
|
||||||
|
|
||||||
def simple_segment_model(input_dim):
|
def simple_segment_model(input_dim):
|
||||||
inp = Input(shape=input_dim)
|
inp = Input(shape=input_dim)
|
||||||
b_gr1 = Bidirectional(GRU(256, return_sequences=True),merge_mode='sum')(inp)
|
b_gr1 = Bidirectional(LSTM(32, return_sequences=True))(inp)
|
||||||
|
b_gr1 = Bidirectional(LSTM(16, return_sequences=True),merge_mode='sum')(b_gr1)
|
||||||
|
b_gr1 = LSTM(1, return_sequences=True,activation='softmax')(b_gr1)
|
||||||
|
# b_gr1 = LSTM(4, return_sequences=True)(b_gr1)
|
||||||
|
# b_gr1 = LSTM(2, return_sequences=True)(b_gr1)
|
||||||
# bn_b_gr1 = BatchNormalization(momentum=0.98)(b_gr1)
|
# bn_b_gr1 = BatchNormalization(momentum=0.98)(b_gr1)
|
||||||
b_gr2 = Bidirectional(GRU(64, return_sequences=True),merge_mode='sum')(b_gr1)
|
# b_gr2 = GRU(64, return_sequences=True)(b_gr1)
|
||||||
# bn_b_gr2 = BatchNormalization(momentum=0.98)(b_gr2)
|
# bn_b_gr2 = BatchNormalization(momentum=0.98)(b_gr2)
|
||||||
d1 = Dense(32)(b_gr2)
|
# d1 = Dense(32)(b_gr2)
|
||||||
bn_d1 = BatchNormalization(momentum=0.98)(d1)
|
# bn_d1 = BatchNormalization(momentum=0.98)(d1)
|
||||||
bn_da1 = Activation('relu')(bn_d1)
|
# bn_da1 = Activation('relu')(bn_d1)
|
||||||
d2 = Dense(8)(bn_da1)
|
# d2 = Dense(8)(bn_da1)
|
||||||
bn_d2 = BatchNormalization(momentum=0.98)(d2)
|
# bn_d2 = BatchNormalization(momentum=0.98)(d2)
|
||||||
bn_da2 = Activation('relu')(bn_d2)
|
# bn_da2 = Activation('relu')(bn_d2)
|
||||||
d3 = Dense(1)(bn_da2)
|
# d3 = Dense(1)(b_gr1)
|
||||||
bn_d3 = BatchNormalization(momentum=0.98)(d3)
|
# # bn_d3 = BatchNormalization(momentum=0.98)(d3)
|
||||||
bn_da3 = Activation('softmax')(bn_d3)
|
# bn_da3 = Activation('softmax')(d3)
|
||||||
oup = Reshape(target_shape=(input_dim[0],))(bn_da3)
|
oup = Reshape(target_shape=(input_dim[0],))(b_gr1)
|
||||||
return Model(inp, oup)
|
return Model(inp, oup)
|
||||||
|
|
||||||
def write_model_arch(mod,mod_file):
|
def write_model_arch(mod,mod_file):
|
||||||
|
|
@ -79,13 +83,13 @@ def load_model_arch(mod_file):
|
||||||
|
|
||||||
def train_segment(collection_name = 'test',resume_weights='',initial_epoch=0):
|
def train_segment(collection_name = 'test',resume_weights='',initial_epoch=0):
|
||||||
# collection_name = 'story_test'
|
# collection_name = 'story_test'
|
||||||
# batch_size = 32
|
batch_size = 128
|
||||||
batch_size = 1
|
# batch_size = 4
|
||||||
model_dir = './models/segment/'+collection_name
|
model_dir = './models/segment/'+collection_name
|
||||||
create_dir(model_dir)
|
create_dir(model_dir)
|
||||||
log_dir = './logs/segment/'+collection_name
|
log_dir = './logs/segment/'+collection_name
|
||||||
create_dir(log_dir)
|
create_dir(log_dir)
|
||||||
tr_gen_fn,te_x,te_y,copy_read_consts = read_segments_tfrecords_generator(collection_name,batch_size,batch_size)
|
tr_gen_fn,te_x,te_y,copy_read_consts = read_segments_tfrecords_generator(collection_name,batch_size,2*batch_size)
|
||||||
tr_gen = tr_gen_fn()
|
tr_gen = tr_gen_fn()
|
||||||
n_step,n_features,n_records = copy_read_consts(model_dir)
|
n_step,n_features,n_records = copy_read_consts(model_dir)
|
||||||
input_dim = (n_step, n_features)
|
input_dim = (n_step, n_features)
|
||||||
|
|
@ -115,8 +119,8 @@ def train_segment(collection_name = 'test',resume_weights='',initial_epoch=0):
|
||||||
mode='auto',
|
mode='auto',
|
||||||
period=1)
|
period=1)
|
||||||
# train
|
# train
|
||||||
rms = RMSprop()
|
opt = RMSprop()
|
||||||
model.compile(loss=categorical_crossentropy, optimizer=rms, metrics=[accuracy])
|
model.compile(loss=categorical_crossentropy, optimizer=opt, metrics=[accuracy])
|
||||||
write_model_arch(model,model_dir+'/speech_segment_model_arch.yaml')
|
write_model_arch(model,model_dir+'/speech_segment_model_arch.yaml')
|
||||||
epoch_n_steps = step_count(n_records,batch_size)
|
epoch_n_steps = step_count(n_records,batch_size)
|
||||||
if resume_weights != '':
|
if resume_weights != '':
|
||||||
|
|
@ -137,4 +141,4 @@ def train_segment(collection_name = 'test',resume_weights='',initial_epoch=0):
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# pass
|
# pass
|
||||||
train_segment('story_words.3')#,'./models/segment/story_phrases.1000/speech_segment_model-final.h5',1001)
|
train_segment('story_words')#,'./models/segment/story_phrases.1000/speech_segment_model-final.h5',1001)
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue