implemented train/test split at word-level and generator returns one-shot validation data
parent
ab452494b3
commit
e9b18921ee
206
speech_data.py
206
speech_data.py
|
|
@ -35,72 +35,74 @@ def _int64_feature(value):
|
||||||
def _bytes_feature(value):
|
def _bytes_feature(value):
|
||||||
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
|
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
|
||||||
|
|
||||||
def create_spectrogram_tfrecords(audio_group='audio'):
|
def create_spectrogram_tfrecords(audio_group='audio',sample_count=0):
|
||||||
'''
|
'''
|
||||||
http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/
|
http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/
|
||||||
http://www.machinelearninguru.com/deep_learning/tensorflow/basics/tfrecord/tfrecord.html
|
http://www.machinelearninguru.com/deep_learning/tensorflow/basics/tfrecord/tfrecord.html
|
||||||
'''
|
'''
|
||||||
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv'
|
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv',index_col=0)
|
||||||
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']
|
|
||||||
, quoting=csv.QUOTE_NONE)
|
|
||||||
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
|
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
|
||||||
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists)
|
n_records,n_spec,n_features = 0,0,0
|
||||||
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
|
|
||||||
|
|
||||||
n_records = n_spec = n_features = 0
|
def write_samples(wg,sample_name):
|
||||||
|
wg_sampled = reservoir_sample(wg,sample_count) if sample_count > 0 else wg
|
||||||
|
word_group_prog = tqdm(wg_sampled,desc='Computing spectrogram')
|
||||||
|
record_file = './outputs/{}.{}.tfrecords'.format(audio_group,sample_name)
|
||||||
|
writer = tf.python_io.TFRecordWriter(record_file)
|
||||||
|
for (w, word_group) in word_group_prog:
|
||||||
|
word_group_prog.set_postfix(word=w,sample_name=sample_name)
|
||||||
|
g = word_group.reset_index()
|
||||||
|
g['spectrogram'] = apply_by_multiprocessing(g['file_path'],generate_aiff_spectrogram)
|
||||||
|
sample_right = g.loc[g['variant'] == 'low']
|
||||||
|
sample_wrong = g.loc[g['variant'] == 'medium']
|
||||||
|
same, diff = siamese_pairs(sample_right, sample_wrong)
|
||||||
|
groups = [([0,1],same),([1,0],diff)]
|
||||||
|
for (output,group) in groups:
|
||||||
|
group_prog = tqdm(group,desc='Writing Spectrogram')
|
||||||
|
for sample1,sample2 in group_prog:
|
||||||
|
group_prog.set_postfix(output=output
|
||||||
|
,var1=sample1['variant']
|
||||||
|
,var2=sample2['variant'])
|
||||||
|
spectro1,spectro2 = sample1['spectrogram'],sample2['spectrogram']
|
||||||
|
spec_n1,spec_n2 = spectro1.shape[0],spectro2.shape[0]
|
||||||
|
spec_w1,spec_w2 = spectro1.shape[1],spectro2.shape[1]
|
||||||
|
spec1,spec2 = spectro1.reshape(-1),spectro2.reshape(-1)
|
||||||
|
nonlocal n_spec,n_records,n_features
|
||||||
|
n_spec = max([n_spec,spec_n1,spec_n2])
|
||||||
|
n_features = spec_w1
|
||||||
|
n_records+=1
|
||||||
|
example = tf.train.Example(features=tf.train.Features(
|
||||||
|
feature={
|
||||||
|
'word': _bytes_feature([w.encode('utf-8')]),
|
||||||
|
'phoneme1': _bytes_feature([sample1['phonemes'].encode('utf-8')]),
|
||||||
|
'phoneme2': _bytes_feature([sample2['phonemes'].encode('utf-8')]),
|
||||||
|
'voice1': _bytes_feature([sample1['voice'].encode('utf-8')]),
|
||||||
|
'voice2': _bytes_feature([sample2['voice'].encode('utf-8')]),
|
||||||
|
'language': _bytes_feature([sample1['language'].encode('utf-8')]),
|
||||||
|
'rate1':_int64_feature([sample1['rate']]),
|
||||||
|
'rate2':_int64_feature([sample2['rate']]),
|
||||||
|
'variant1': _bytes_feature([sample1['variant'].encode('utf-8')]),
|
||||||
|
'variant2': _bytes_feature([sample2['variant'].encode('utf-8')]),
|
||||||
|
'file1': _bytes_feature([sample1['file'].encode('utf-8')]),
|
||||||
|
'file2': _bytes_feature([sample2['file'].encode('utf-8')]),
|
||||||
|
'spec1':_float_feature(spec1),
|
||||||
|
'spec2':_float_feature(spec2),
|
||||||
|
'spec_n1':_int64_feature([spec_n1]),
|
||||||
|
'spec_w1':_int64_feature([spec_w1]),
|
||||||
|
'spec_n2':_int64_feature([spec_n2]),
|
||||||
|
'spec_w2':_int64_feature([spec_w2]),
|
||||||
|
'output':_int64_feature(output)
|
||||||
|
}
|
||||||
|
))
|
||||||
|
writer.write(example.SerializeToString())
|
||||||
|
group_prog.close()
|
||||||
|
word_group_prog.close()
|
||||||
|
writer.close()
|
||||||
|
|
||||||
writer = tf.python_io.TFRecordWriter('./outputs/' + audio_group + '.tfrecords')
|
word_groups = [i for i in audio_samples.groupby('word')]
|
||||||
prog = tqdm(audio_samples.groupby(audio_samples['word']),desc='Computing spectrogram')
|
tr_audio_samples,te_audio_samples = train_test_split(word_groups,test_size=0.1)
|
||||||
for (w, word_group) in prog:
|
write_samples(tr_audio_samples,'train')
|
||||||
prog.set_postfix(word=w)
|
write_samples(te_audio_samples,'test')
|
||||||
g = word_group.reset_index()
|
|
||||||
g['spectrogram'] = apply_by_multiprocessing(g['file_path'],generate_aiff_spectrogram)
|
|
||||||
sample_right = g.loc[g['variant'] == 'low']
|
|
||||||
sample_wrong = g.loc[g['variant'] == 'medium']
|
|
||||||
same, diff = siamese_pairs(sample_right, sample_wrong)
|
|
||||||
groups = [([0,1],same),([1,0],diff)]
|
|
||||||
for (output,group) in groups:
|
|
||||||
group_prog = tqdm(group,desc='Writing Spectrogram')
|
|
||||||
for sample1,sample2 in group_prog:
|
|
||||||
group_prog.set_postfix(output=output
|
|
||||||
,var1=sample1['variant']
|
|
||||||
,var2=sample2['variant'])
|
|
||||||
spectro1,spectro2 = sample1['spectrogram'],sample2['spectrogram']
|
|
||||||
spec_n1,spec_n2 = spectro1.shape[0],spectro2.shape[0]
|
|
||||||
spec_w1,spec_w2 = spectro1.shape[1],spectro2.shape[1]
|
|
||||||
spec1,spec2 = spectro1.reshape(-1),spectro2.reshape(-1)
|
|
||||||
|
|
||||||
n_spec = max([n_spec,spec_n1,spec_n2])
|
|
||||||
n_features = spec_w1
|
|
||||||
n_records+=1
|
|
||||||
|
|
||||||
example = tf.train.Example(features=tf.train.Features(
|
|
||||||
feature={
|
|
||||||
'word': _bytes_feature([w.encode('utf-8')]),
|
|
||||||
'phoneme1': _bytes_feature([sample1['phonemes'].encode('utf-8')]),
|
|
||||||
'phoneme2': _bytes_feature([sample2['phonemes'].encode('utf-8')]),
|
|
||||||
'voice1': _bytes_feature([sample1['voice'].encode('utf-8')]),
|
|
||||||
'voice2': _bytes_feature([sample2['voice'].encode('utf-8')]),
|
|
||||||
'language': _bytes_feature([sample1['language'].encode('utf-8')]),
|
|
||||||
'rate1':_int64_feature([sample1['rate']]),
|
|
||||||
'rate2':_int64_feature([sample2['rate']]),
|
|
||||||
'variant1': _bytes_feature([sample1['variant'].encode('utf-8')]),
|
|
||||||
'variant2': _bytes_feature([sample2['variant'].encode('utf-8')]),
|
|
||||||
'file1': _bytes_feature([sample1['file'].encode('utf-8')]),
|
|
||||||
'file2': _bytes_feature([sample2['file'].encode('utf-8')]),
|
|
||||||
'spec1':_float_feature(spec1),
|
|
||||||
'spec2':_float_feature(spec2),
|
|
||||||
'spec_n1':_int64_feature([spec_n1]),
|
|
||||||
'spec_w1':_int64_feature([spec_w1]),
|
|
||||||
'spec_n2':_int64_feature([spec_n2]),
|
|
||||||
'spec_w2':_int64_feature([spec_w2]),
|
|
||||||
'output':_int64_feature(output)
|
|
||||||
}
|
|
||||||
))
|
|
||||||
writer.write(example.SerializeToString())
|
|
||||||
group_prog.close()
|
|
||||||
prog.close()
|
|
||||||
writer.close()
|
|
||||||
const_file = os.path.join('./outputs',audio_group+'.constants')
|
const_file = os.path.join('./outputs',audio_group+'.constants')
|
||||||
pickle.dump((n_spec,n_features,n_records),open(const_file,'wb'))
|
pickle.dump((n_spec,n_features,n_records),open(const_file,'wb'))
|
||||||
|
|
||||||
|
|
@ -196,12 +198,15 @@ def read_siamese_tfrecords_oneshot(audio_group='audio',sample_size=3000):
|
||||||
output_data = np.zeros((samples,2))
|
output_data = np.zeros((samples,2))
|
||||||
random_samples = enumerate(reservoir_sample(record_iterator,samples))
|
random_samples = enumerate(reservoir_sample(record_iterator,samples))
|
||||||
for (i,string_record) in tqdm(random_samples,total=samples):
|
for (i,string_record) in tqdm(random_samples,total=samples):
|
||||||
# if i == samples:
|
|
||||||
# break
|
|
||||||
example = tf.train.Example()
|
example = tf.train.Example()
|
||||||
example.ParseFromString(string_record)
|
example.ParseFromString(string_record)
|
||||||
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(n_spec,n_features)
|
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
|
||||||
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(n_spec,n_features)
|
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
|
||||||
|
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
|
||||||
|
spec_w2 = example.features.feature['spec_w2'].int64_list.value[0]
|
||||||
|
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
|
||||||
|
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
|
||||||
|
p_spec1,p_spec2 = padd_zeros(spec1,n_spec),padd_zeros(spec2,n_spec)
|
||||||
input_data[i] = np.asarray([spec1,spec2])
|
input_data[i] = np.asarray([spec1,spec2])
|
||||||
output = example.features.feature['output'].int64_list.value
|
output = example.features.feature['output'].int64_list.value
|
||||||
output_data[i] = np.asarray(output)
|
output_data[i] = np.asarray(output)
|
||||||
|
|
@ -210,7 +215,65 @@ def read_siamese_tfrecords_oneshot(audio_group='audio',sample_size=3000):
|
||||||
# result = (tr_pairs,te_pairs,tr_y,te_y,n_spec,n_features)
|
# result = (tr_pairs,te_pairs,tr_y,te_y,n_spec,n_features)
|
||||||
return input_data,output_data
|
return input_data,output_data
|
||||||
|
|
||||||
def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32):
|
def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,sample_size=100):
|
||||||
|
records_file = os.path.join('./outputs',audio_group+'.train.tfrecords')
|
||||||
|
input_pairs = []
|
||||||
|
output_class = []
|
||||||
|
const_file = os.path.join('./outputs',audio_group+'.constants')
|
||||||
|
(n_spec,n_features,n_records) = pickle.load(open(const_file,'rb'))
|
||||||
|
print('reading tfrecords({}-train)...'.format(audio_group))
|
||||||
|
def record_generator():
|
||||||
|
input_data = []
|
||||||
|
output_data = []
|
||||||
|
while True:
|
||||||
|
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
|
||||||
|
#tqdm(enumerate(record_iterator),total=n_records)
|
||||||
|
for (i,string_record) in enumerate(record_iterator):
|
||||||
|
example = tf.train.Example()
|
||||||
|
example.ParseFromString(string_record)
|
||||||
|
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
|
||||||
|
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
|
||||||
|
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
|
||||||
|
spec_w2 = example.features.feature['spec_w2'].int64_list.value[0]
|
||||||
|
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
|
||||||
|
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
|
||||||
|
p_spec1,p_spec2 = padd_zeros(spec1,n_spec),padd_zeros(spec2,n_spec)
|
||||||
|
input_data.append(np.asarray([p_spec1,p_spec2]))
|
||||||
|
output = example.features.feature['output'].int64_list.value
|
||||||
|
output_data.append(np.asarray(output))
|
||||||
|
if len(input_data) == batch_size:
|
||||||
|
input_arr = np.asarray(input_data)
|
||||||
|
output_arr = np.asarray(output_data)
|
||||||
|
yield ([input_arr[:, 0], input_arr[:, 1]],output_arr)
|
||||||
|
input_data = []
|
||||||
|
output_data = []
|
||||||
|
|
||||||
|
# Read test in one-shot
|
||||||
|
te_records_file = os.path.join('./outputs',audio_group+'.test.tfrecords')
|
||||||
|
te_re_iterator = tf.python_io.tf_record_iterator(path=records_file)
|
||||||
|
print('reading tfrecords({}-test)...'.format(audio_group))
|
||||||
|
samples = min([sample_size,n_records])
|
||||||
|
# samples = n_records
|
||||||
|
input_data = np.zeros((samples,2,n_spec,n_features))
|
||||||
|
output_data = np.zeros((samples,2))
|
||||||
|
random_samples = enumerate(reservoir_sample(te_re_iterator,samples))
|
||||||
|
for (i,string_record) in tqdm(random_samples,total=samples):
|
||||||
|
example = tf.train.Example()
|
||||||
|
example.ParseFromString(string_record)
|
||||||
|
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
|
||||||
|
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
|
||||||
|
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
|
||||||
|
spec_w2 = example.features.feature['spec_w2'].int64_list.value[0]
|
||||||
|
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
|
||||||
|
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
|
||||||
|
p_spec1,p_spec2 = padd_zeros(spec1,n_spec),padd_zeros(spec2,n_spec)
|
||||||
|
input_data[i] = np.asarray([p_spec1,p_spec2])
|
||||||
|
output = example.features.feature['output'].int64_list.value
|
||||||
|
output_data[i] = np.asarray(output)
|
||||||
|
|
||||||
|
return record_generator,input_data,output_data,n_spec,n_features,n_records
|
||||||
|
|
||||||
|
def read_siamese_tfrecords_generator_old(audio_group='audio',batch_size=32):
|
||||||
records_file = os.path.join('./outputs',audio_group+'_padded.tfrecords')
|
records_file = os.path.join('./outputs',audio_group+'_padded.tfrecords')
|
||||||
input_pairs = []
|
input_pairs = []
|
||||||
output_class = []
|
output_class = []
|
||||||
|
|
@ -330,9 +393,16 @@ def fix_csv(audio_group='audio'):
|
||||||
audio_csv_lines = open('./outputs/' + audio_group + '.csv','r').readlines()
|
audio_csv_lines = open('./outputs/' + audio_group + '.csv','r').readlines()
|
||||||
audio_csv_data = [i.strip().split(',') for i in audio_csv_lines]
|
audio_csv_data = [i.strip().split(',') for i in audio_csv_lines]
|
||||||
proper_rows = [i for i in audio_csv_data if len(i) == 7]
|
proper_rows = [i for i in audio_csv_data if len(i) == 7]
|
||||||
with open('./outputs/' + audio_group + '-new.csv','w') as fixed_csv:
|
with open('./outputs/' + audio_group + '.csv','w') as fixed_csv:
|
||||||
fixed_csv_w = csv.writer(fixed_csv, quoting=csv.QUOTE_MINIMAL)
|
fixed_csv_w = csv.writer(fixed_csv, quoting=csv.QUOTE_MINIMAL)
|
||||||
fixed_csv_w.writerows(proper_rows)
|
fixed_csv_w.writerows(proper_rows)
|
||||||
|
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv'
|
||||||
|
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file'])
|
||||||
|
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
|
||||||
|
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists)
|
||||||
|
audio_samples = audio_samples[audio_samples['file_exists'] == True]
|
||||||
|
audio_samples = audio_samples.drop(['file_path','file_exists'],axis=1).reset_index(drop=True)
|
||||||
|
audio_samples.to_csv('./outputs/' + audio_group + '.csv')
|
||||||
|
|
||||||
def convert_old_audio():
|
def convert_old_audio():
|
||||||
audio_samples = pd.read_csv( './outputs/audio.csv.old'
|
audio_samples = pd.read_csv( './outputs/audio.csv.old'
|
||||||
|
|
@ -352,9 +422,11 @@ if __name__ == '__main__':
|
||||||
# create_spectrogram_tfrecords('story_words_test')
|
# create_spectrogram_tfrecords('story_words_test')
|
||||||
# read_siamese_tfrecords('story_all')
|
# read_siamese_tfrecords('story_all')
|
||||||
# read_siamese_tfrecords('story_words_test')
|
# read_siamese_tfrecords('story_words_test')
|
||||||
padd_zeros_siamese_tfrecords('story_words')
|
# padd_zeros_siamese_tfrecords('story_words')
|
||||||
|
# fix_csv()
|
||||||
# pickle_constants('story_words')
|
# pickle_constants('story_words')
|
||||||
# create_spectrogram_tfrecords('audio')
|
# create_spectrogram_tfrecords('audio',sample_count=100)
|
||||||
|
read_siamese_tfrecords_generator('audio')
|
||||||
# padd_zeros_siamese_tfrecords('audio')
|
# padd_zeros_siamese_tfrecords('audio')
|
||||||
# create_padded_spectrogram()
|
# create_padded_spectrogram()
|
||||||
# create_speech_pairs_data()
|
# create_speech_pairs_data()
|
||||||
|
|
|
||||||
|
|
@ -13,6 +13,9 @@ from keras.optimizers import RMSprop
|
||||||
from keras.callbacks import TensorBoard, ModelCheckpoint
|
from keras.callbacks import TensorBoard, ModelCheckpoint
|
||||||
from keras import backend as K
|
from keras import backend as K
|
||||||
|
|
||||||
|
def create_dir(direc):
|
||||||
|
if not os.path.exists(direc):
|
||||||
|
os.makedirs(direc)
|
||||||
|
|
||||||
def euclidean_distance(vects):
|
def euclidean_distance(vects):
|
||||||
x, y = vects
|
x, y = vects
|
||||||
|
|
@ -79,13 +82,14 @@ def siamese_model(input_dim):
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
def train_siamese():
|
def train_siamese(audio_group = 'audio'):
|
||||||
# the data, shuffled and split between train and test sets
|
# the data, shuffled and split between train and test sets
|
||||||
# tr_pairs, te_pairs, tr_y_e, te_y_e = speech_model_data()
|
# tr_pairs, te_pairs, tr_y_e, te_y_e = speech_model_data()
|
||||||
batch_size = 512
|
batch_size = 512
|
||||||
tr_gen_fn,n_step,n_features,n_records = read_siamese_tfrecords_generator('audio',batch_size)
|
model_dir = './models/'+audio_group
|
||||||
|
create_dir(model_dir)
|
||||||
|
tr_gen_fn,te_pairs,te_y,n_step,n_features,n_records = read_siamese_tfrecords_generator(audio_group,batch_size,300)
|
||||||
tr_gen = tr_gen_fn()
|
tr_gen = tr_gen_fn()
|
||||||
(te_pairs,te_y) = read_siamese_tfrecords_oneshot('audio',1000)
|
|
||||||
# tr_y = to_categorical(tr_y_e, num_classes=2)
|
# tr_y = to_categorical(tr_y_e, num_classes=2)
|
||||||
# te_y = to_categorical(te_y_e, num_classes=2)
|
# te_y = to_categorical(te_y_e, num_classes=2)
|
||||||
input_dim = (n_step, n_features)
|
input_dim = (n_step, n_features)
|
||||||
|
|
@ -102,7 +106,7 @@ def train_siamese():
|
||||||
embeddings_freq=0,
|
embeddings_freq=0,
|
||||||
embeddings_layer_names=None,
|
embeddings_layer_names=None,
|
||||||
embeddings_metadata=None)
|
embeddings_metadata=None)
|
||||||
cp_file_fmt = './models/siamese_speech_model-{epoch:02d}-epoch-{val_loss:0.2f}\
|
cp_file_fmt = model_dir+'/siamese_speech_model-{epoch:02d}-epoch-{val_loss:0.2f}\
|
||||||
-acc.h5'
|
-acc.h5'
|
||||||
|
|
||||||
cp_cb = ModelCheckpoint(
|
cp_cb = ModelCheckpoint(
|
||||||
|
|
@ -126,9 +130,10 @@ def train_siamese():
|
||||||
model.fit_generator(tr_gen
|
model.fit_generator(tr_gen
|
||||||
,epochs=100
|
,epochs=100
|
||||||
,steps_per_epoch=n_records//batch_size
|
,steps_per_epoch=n_records//batch_size
|
||||||
|
,validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y)
|
||||||
,use_multiprocessing=True)
|
,use_multiprocessing=True)
|
||||||
|
|
||||||
model.save('./models/siamese_speech_model-final.h5')
|
model.save(model_dir+'/siamese_speech_model-final.h5')
|
||||||
# compute final accuracy on training and test sets
|
# compute final accuracy on training and test sets
|
||||||
# y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]])
|
# y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]])
|
||||||
# tr_acc = compute_accuracy(tr_y, y_pred)
|
# tr_acc = compute_accuracy(tr_y, y_pred)
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue