implemented train/test split at word-level and generator returns one-shot validation data

master
Malar Kannan 2017-11-10 14:07:31 +05:30
parent ab452494b3
commit e9b18921ee
2 changed files with 149 additions and 72 deletions

View File

@ -35,72 +35,74 @@ def _int64_feature(value):
def _bytes_feature(value): def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value)) return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
def create_spectrogram_tfrecords(audio_group='audio'): def create_spectrogram_tfrecords(audio_group='audio',sample_count=0):
''' '''
http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/ http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/
http://www.machinelearninguru.com/deep_learning/tensorflow/basics/tfrecord/tfrecord.html http://www.machinelearninguru.com/deep_learning/tensorflow/basics/tfrecord/tfrecord.html
''' '''
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv' audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv',index_col=0)
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']
, quoting=csv.QUOTE_NONE)
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x) audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists) n_records,n_spec,n_features = 0,0,0
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
n_records = n_spec = n_features = 0 def write_samples(wg,sample_name):
wg_sampled = reservoir_sample(wg,sample_count) if sample_count > 0 else wg
word_group_prog = tqdm(wg_sampled,desc='Computing spectrogram')
record_file = './outputs/{}.{}.tfrecords'.format(audio_group,sample_name)
writer = tf.python_io.TFRecordWriter(record_file)
for (w, word_group) in word_group_prog:
word_group_prog.set_postfix(word=w,sample_name=sample_name)
g = word_group.reset_index()
g['spectrogram'] = apply_by_multiprocessing(g['file_path'],generate_aiff_spectrogram)
sample_right = g.loc[g['variant'] == 'low']
sample_wrong = g.loc[g['variant'] == 'medium']
same, diff = siamese_pairs(sample_right, sample_wrong)
groups = [([0,1],same),([1,0],diff)]
for (output,group) in groups:
group_prog = tqdm(group,desc='Writing Spectrogram')
for sample1,sample2 in group_prog:
group_prog.set_postfix(output=output
,var1=sample1['variant']
,var2=sample2['variant'])
spectro1,spectro2 = sample1['spectrogram'],sample2['spectrogram']
spec_n1,spec_n2 = spectro1.shape[0],spectro2.shape[0]
spec_w1,spec_w2 = spectro1.shape[1],spectro2.shape[1]
spec1,spec2 = spectro1.reshape(-1),spectro2.reshape(-1)
nonlocal n_spec,n_records,n_features
n_spec = max([n_spec,spec_n1,spec_n2])
n_features = spec_w1
n_records+=1
example = tf.train.Example(features=tf.train.Features(
feature={
'word': _bytes_feature([w.encode('utf-8')]),
'phoneme1': _bytes_feature([sample1['phonemes'].encode('utf-8')]),
'phoneme2': _bytes_feature([sample2['phonemes'].encode('utf-8')]),
'voice1': _bytes_feature([sample1['voice'].encode('utf-8')]),
'voice2': _bytes_feature([sample2['voice'].encode('utf-8')]),
'language': _bytes_feature([sample1['language'].encode('utf-8')]),
'rate1':_int64_feature([sample1['rate']]),
'rate2':_int64_feature([sample2['rate']]),
'variant1': _bytes_feature([sample1['variant'].encode('utf-8')]),
'variant2': _bytes_feature([sample2['variant'].encode('utf-8')]),
'file1': _bytes_feature([sample1['file'].encode('utf-8')]),
'file2': _bytes_feature([sample2['file'].encode('utf-8')]),
'spec1':_float_feature(spec1),
'spec2':_float_feature(spec2),
'spec_n1':_int64_feature([spec_n1]),
'spec_w1':_int64_feature([spec_w1]),
'spec_n2':_int64_feature([spec_n2]),
'spec_w2':_int64_feature([spec_w2]),
'output':_int64_feature(output)
}
))
writer.write(example.SerializeToString())
group_prog.close()
word_group_prog.close()
writer.close()
writer = tf.python_io.TFRecordWriter('./outputs/' + audio_group + '.tfrecords') word_groups = [i for i in audio_samples.groupby('word')]
prog = tqdm(audio_samples.groupby(audio_samples['word']),desc='Computing spectrogram') tr_audio_samples,te_audio_samples = train_test_split(word_groups,test_size=0.1)
for (w, word_group) in prog: write_samples(tr_audio_samples,'train')
prog.set_postfix(word=w) write_samples(te_audio_samples,'test')
g = word_group.reset_index()
g['spectrogram'] = apply_by_multiprocessing(g['file_path'],generate_aiff_spectrogram)
sample_right = g.loc[g['variant'] == 'low']
sample_wrong = g.loc[g['variant'] == 'medium']
same, diff = siamese_pairs(sample_right, sample_wrong)
groups = [([0,1],same),([1,0],diff)]
for (output,group) in groups:
group_prog = tqdm(group,desc='Writing Spectrogram')
for sample1,sample2 in group_prog:
group_prog.set_postfix(output=output
,var1=sample1['variant']
,var2=sample2['variant'])
spectro1,spectro2 = sample1['spectrogram'],sample2['spectrogram']
spec_n1,spec_n2 = spectro1.shape[0],spectro2.shape[0]
spec_w1,spec_w2 = spectro1.shape[1],spectro2.shape[1]
spec1,spec2 = spectro1.reshape(-1),spectro2.reshape(-1)
n_spec = max([n_spec,spec_n1,spec_n2])
n_features = spec_w1
n_records+=1
example = tf.train.Example(features=tf.train.Features(
feature={
'word': _bytes_feature([w.encode('utf-8')]),
'phoneme1': _bytes_feature([sample1['phonemes'].encode('utf-8')]),
'phoneme2': _bytes_feature([sample2['phonemes'].encode('utf-8')]),
'voice1': _bytes_feature([sample1['voice'].encode('utf-8')]),
'voice2': _bytes_feature([sample2['voice'].encode('utf-8')]),
'language': _bytes_feature([sample1['language'].encode('utf-8')]),
'rate1':_int64_feature([sample1['rate']]),
'rate2':_int64_feature([sample2['rate']]),
'variant1': _bytes_feature([sample1['variant'].encode('utf-8')]),
'variant2': _bytes_feature([sample2['variant'].encode('utf-8')]),
'file1': _bytes_feature([sample1['file'].encode('utf-8')]),
'file2': _bytes_feature([sample2['file'].encode('utf-8')]),
'spec1':_float_feature(spec1),
'spec2':_float_feature(spec2),
'spec_n1':_int64_feature([spec_n1]),
'spec_w1':_int64_feature([spec_w1]),
'spec_n2':_int64_feature([spec_n2]),
'spec_w2':_int64_feature([spec_w2]),
'output':_int64_feature(output)
}
))
writer.write(example.SerializeToString())
group_prog.close()
prog.close()
writer.close()
const_file = os.path.join('./outputs',audio_group+'.constants') const_file = os.path.join('./outputs',audio_group+'.constants')
pickle.dump((n_spec,n_features,n_records),open(const_file,'wb')) pickle.dump((n_spec,n_features,n_records),open(const_file,'wb'))
@ -196,12 +198,15 @@ def read_siamese_tfrecords_oneshot(audio_group='audio',sample_size=3000):
output_data = np.zeros((samples,2)) output_data = np.zeros((samples,2))
random_samples = enumerate(reservoir_sample(record_iterator,samples)) random_samples = enumerate(reservoir_sample(record_iterator,samples))
for (i,string_record) in tqdm(random_samples,total=samples): for (i,string_record) in tqdm(random_samples,total=samples):
# if i == samples:
# break
example = tf.train.Example() example = tf.train.Example()
example.ParseFromString(string_record) example.ParseFromString(string_record)
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(n_spec,n_features) spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(n_spec,n_features) spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
spec_w2 = example.features.feature['spec_w2'].int64_list.value[0]
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
p_spec1,p_spec2 = padd_zeros(spec1,n_spec),padd_zeros(spec2,n_spec)
input_data[i] = np.asarray([spec1,spec2]) input_data[i] = np.asarray([spec1,spec2])
output = example.features.feature['output'].int64_list.value output = example.features.feature['output'].int64_list.value
output_data[i] = np.asarray(output) output_data[i] = np.asarray(output)
@ -210,7 +215,65 @@ def read_siamese_tfrecords_oneshot(audio_group='audio',sample_size=3000):
# result = (tr_pairs,te_pairs,tr_y,te_y,n_spec,n_features) # result = (tr_pairs,te_pairs,tr_y,te_y,n_spec,n_features)
return input_data,output_data return input_data,output_data
def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32): def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,sample_size=100):
records_file = os.path.join('./outputs',audio_group+'.train.tfrecords')
input_pairs = []
output_class = []
const_file = os.path.join('./outputs',audio_group+'.constants')
(n_spec,n_features,n_records) = pickle.load(open(const_file,'rb'))
print('reading tfrecords({}-train)...'.format(audio_group))
def record_generator():
input_data = []
output_data = []
while True:
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
#tqdm(enumerate(record_iterator),total=n_records)
for (i,string_record) in enumerate(record_iterator):
example = tf.train.Example()
example.ParseFromString(string_record)
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
spec_w2 = example.features.feature['spec_w2'].int64_list.value[0]
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
p_spec1,p_spec2 = padd_zeros(spec1,n_spec),padd_zeros(spec2,n_spec)
input_data.append(np.asarray([p_spec1,p_spec2]))
output = example.features.feature['output'].int64_list.value
output_data.append(np.asarray(output))
if len(input_data) == batch_size:
input_arr = np.asarray(input_data)
output_arr = np.asarray(output_data)
yield ([input_arr[:, 0], input_arr[:, 1]],output_arr)
input_data = []
output_data = []
# Read test in one-shot
te_records_file = os.path.join('./outputs',audio_group+'.test.tfrecords')
te_re_iterator = tf.python_io.tf_record_iterator(path=records_file)
print('reading tfrecords({}-test)...'.format(audio_group))
samples = min([sample_size,n_records])
# samples = n_records
input_data = np.zeros((samples,2,n_spec,n_features))
output_data = np.zeros((samples,2))
random_samples = enumerate(reservoir_sample(te_re_iterator,samples))
for (i,string_record) in tqdm(random_samples,total=samples):
example = tf.train.Example()
example.ParseFromString(string_record)
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
spec_w2 = example.features.feature['spec_w2'].int64_list.value[0]
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
p_spec1,p_spec2 = padd_zeros(spec1,n_spec),padd_zeros(spec2,n_spec)
input_data[i] = np.asarray([p_spec1,p_spec2])
output = example.features.feature['output'].int64_list.value
output_data[i] = np.asarray(output)
return record_generator,input_data,output_data,n_spec,n_features,n_records
def read_siamese_tfrecords_generator_old(audio_group='audio',batch_size=32):
records_file = os.path.join('./outputs',audio_group+'_padded.tfrecords') records_file = os.path.join('./outputs',audio_group+'_padded.tfrecords')
input_pairs = [] input_pairs = []
output_class = [] output_class = []
@ -330,9 +393,16 @@ def fix_csv(audio_group='audio'):
audio_csv_lines = open('./outputs/' + audio_group + '.csv','r').readlines() audio_csv_lines = open('./outputs/' + audio_group + '.csv','r').readlines()
audio_csv_data = [i.strip().split(',') for i in audio_csv_lines] audio_csv_data = [i.strip().split(',') for i in audio_csv_lines]
proper_rows = [i for i in audio_csv_data if len(i) == 7] proper_rows = [i for i in audio_csv_data if len(i) == 7]
with open('./outputs/' + audio_group + '-new.csv','w') as fixed_csv: with open('./outputs/' + audio_group + '.csv','w') as fixed_csv:
fixed_csv_w = csv.writer(fixed_csv, quoting=csv.QUOTE_MINIMAL) fixed_csv_w = csv.writer(fixed_csv, quoting=csv.QUOTE_MINIMAL)
fixed_csv_w.writerows(proper_rows) fixed_csv_w.writerows(proper_rows)
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv'
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file'])
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists)
audio_samples = audio_samples[audio_samples['file_exists'] == True]
audio_samples = audio_samples.drop(['file_path','file_exists'],axis=1).reset_index(drop=True)
audio_samples.to_csv('./outputs/' + audio_group + '.csv')
def convert_old_audio(): def convert_old_audio():
audio_samples = pd.read_csv( './outputs/audio.csv.old' audio_samples = pd.read_csv( './outputs/audio.csv.old'
@ -352,9 +422,11 @@ if __name__ == '__main__':
# create_spectrogram_tfrecords('story_words_test') # create_spectrogram_tfrecords('story_words_test')
# read_siamese_tfrecords('story_all') # read_siamese_tfrecords('story_all')
# read_siamese_tfrecords('story_words_test') # read_siamese_tfrecords('story_words_test')
padd_zeros_siamese_tfrecords('story_words') # padd_zeros_siamese_tfrecords('story_words')
# fix_csv()
# pickle_constants('story_words') # pickle_constants('story_words')
# create_spectrogram_tfrecords('audio') # create_spectrogram_tfrecords('audio',sample_count=100)
read_siamese_tfrecords_generator('audio')
# padd_zeros_siamese_tfrecords('audio') # padd_zeros_siamese_tfrecords('audio')
# create_padded_spectrogram() # create_padded_spectrogram()
# create_speech_pairs_data() # create_speech_pairs_data()

View File

@ -13,6 +13,9 @@ from keras.optimizers import RMSprop
from keras.callbacks import TensorBoard, ModelCheckpoint from keras.callbacks import TensorBoard, ModelCheckpoint
from keras import backend as K from keras import backend as K
def create_dir(direc):
if not os.path.exists(direc):
os.makedirs(direc)
def euclidean_distance(vects): def euclidean_distance(vects):
x, y = vects x, y = vects
@ -79,13 +82,14 @@ def siamese_model(input_dim):
return model return model
def train_siamese(): def train_siamese(audio_group = 'audio'):
# the data, shuffled and split between train and test sets # the data, shuffled and split between train and test sets
# tr_pairs, te_pairs, tr_y_e, te_y_e = speech_model_data() # tr_pairs, te_pairs, tr_y_e, te_y_e = speech_model_data()
batch_size = 512 batch_size = 512
tr_gen_fn,n_step,n_features,n_records = read_siamese_tfrecords_generator('audio',batch_size) model_dir = './models/'+audio_group
create_dir(model_dir)
tr_gen_fn,te_pairs,te_y,n_step,n_features,n_records = read_siamese_tfrecords_generator(audio_group,batch_size,300)
tr_gen = tr_gen_fn() tr_gen = tr_gen_fn()
(te_pairs,te_y) = read_siamese_tfrecords_oneshot('audio',1000)
# tr_y = to_categorical(tr_y_e, num_classes=2) # tr_y = to_categorical(tr_y_e, num_classes=2)
# te_y = to_categorical(te_y_e, num_classes=2) # te_y = to_categorical(te_y_e, num_classes=2)
input_dim = (n_step, n_features) input_dim = (n_step, n_features)
@ -102,7 +106,7 @@ def train_siamese():
embeddings_freq=0, embeddings_freq=0,
embeddings_layer_names=None, embeddings_layer_names=None,
embeddings_metadata=None) embeddings_metadata=None)
cp_file_fmt = './models/siamese_speech_model-{epoch:02d}-epoch-{val_loss:0.2f}\ cp_file_fmt = model_dir+'/siamese_speech_model-{epoch:02d}-epoch-{val_loss:0.2f}\
-acc.h5' -acc.h5'
cp_cb = ModelCheckpoint( cp_cb = ModelCheckpoint(
@ -126,9 +130,10 @@ def train_siamese():
model.fit_generator(tr_gen model.fit_generator(tr_gen
,epochs=100 ,epochs=100
,steps_per_epoch=n_records//batch_size ,steps_per_epoch=n_records//batch_size
,validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y)
,use_multiprocessing=True) ,use_multiprocessing=True)
model.save('./models/siamese_speech_model-final.h5') model.save(model_dir+'/siamese_speech_model-final.h5')
# compute final accuracy on training and test sets # compute final accuracy on training and test sets
# y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]]) # y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]])
# tr_acc = compute_accuracy(tr_y, y_pred) # tr_acc = compute_accuracy(tr_y, y_pred)