From c682962c8f27833c10c802e07b21c535afaae31b Mon Sep 17 00:00:00 2001 From: Malar Kannan Date: Fri, 17 Nov 2017 14:17:12 +0530 Subject: [PATCH] using a Bi-LSTM layer as the first layer --- speech_model.py | 10 +++------- 1 file changed, 3 insertions(+), 7 deletions(-) diff --git a/speech_model.py b/speech_model.py index 5d5842e..7d81df3 100644 --- a/speech_model.py +++ b/speech_model.py @@ -3,7 +3,7 @@ from __future__ import print_function import numpy as np from speech_data import read_siamese_tfrecords_generator from keras.models import Model,load_model,model_from_yaml -from keras.layers import Input, Dense, Dropout, LSTM, Lambda, Concatenate +from keras.layers import Input, Dense, Dropout, LSTM, Lambda, Concatenate, Bidirectional from keras.losses import categorical_crossentropy from keras.utils import to_categorical from keras.optimizers import RMSprop @@ -17,7 +17,7 @@ def create_base_rnn_network(input_dim): ''' inp = Input(shape=input_dim) # ls0 = LSTM(512, return_sequences=True)(inp) - ls1 = LSTM(256, return_sequences=True)(inp) + ls1 = Bidirectional(LSTM(256, return_sequences=True))(inp) ls2 = LSTM(128, return_sequences=True)(ls1) # ls3 = LSTM(32, return_sequences=True)(ls2) ls4 = LSTM(64)(ls2) @@ -55,10 +55,6 @@ def siamese_model(input_dim): processed_b = base_network(input_b) final_output = dense_classifier([processed_a,processed_b]) model = Model([input_a, input_b], final_output) - # distance = Lambda( - # euclidean_distance, - # output_shape=eucl_dist_output_shape)([processed_a, processed_b]) - # model = Model([input_a, input_b], distance) return model def write_model_arch(mod,mod_file): @@ -73,7 +69,7 @@ def load_model_arch(mod_file): return mod def train_siamese(audio_group = 'audio'): - batch_size = 256 + batch_size = 128 model_dir = './models/'+audio_group create_dir(model_dir) log_dir = './logs/'+audio_group