implemented tfrecord writer for spectrograms
parent
fabd882664
commit
c187fbe1ca
|
|
@ -1,7 +1,8 @@
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from pandas_parallel import apply_by_multiprocessing
|
from pandas_parallel import apply_by_multiprocessing
|
||||||
import dask as dd
|
# import dask as dd
|
||||||
import dask.dataframe as ddf
|
# import dask.dataframe as ddf
|
||||||
|
import tensorflow as tf
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from spectro_gen import generate_aiff_spectrogram
|
from spectro_gen import generate_aiff_spectrogram
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
|
|
@ -91,13 +92,14 @@ def create_spectrogram_data(audio_group='audio'):
|
||||||
audio_samples.to_pickle('outputs/{}-spectrogram.pkl'.format(audio_group))
|
audio_samples.to_pickle('outputs/{}-spectrogram.pkl'.format(audio_group))
|
||||||
|
|
||||||
def create_spectrogram_tfrecords(audio_group='audio'):
|
def create_spectrogram_tfrecords(audio_group='audio'):
|
||||||
|
# audio_group = 'story_words'
|
||||||
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv'
|
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv'
|
||||||
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']
|
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']
|
||||||
, quoting=csv.QUOTE_NONE)
|
, quoting=csv.QUOTE_NONE)
|
||||||
# audio_samples = audio_samples.loc[audio_samples['word'] ==
|
# audio_samples = audio_samples.loc[audio_samples['word'] ==
|
||||||
# 'sunflowers'].reset_index(drop=True)
|
# 'sunflowers'].reset_index(drop=True)
|
||||||
audio_samples['file_paths'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
|
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
|
||||||
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_paths'], os.path.exists)
|
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists)
|
||||||
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
|
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
|
||||||
# audio_samples['spectrogram'] = apply_by_multiprocessing(audio_samples['file_paths'],generate_aiff_spectrogram)#.apply(
|
# audio_samples['spectrogram'] = apply_by_multiprocessing(audio_samples['file_paths'],generate_aiff_spectrogram)#.apply(
|
||||||
# audio_samples['window_count'] = audio_samples.loc[:,'spectrogram'].apply(lambda x: x.shape[0])
|
# audio_samples['window_count'] = audio_samples.loc[:,'spectrogram'].apply(lambda x: x.shape[0])
|
||||||
|
|
@ -111,17 +113,29 @@ def create_spectrogram_tfrecords(audio_group='audio'):
|
||||||
|
|
||||||
def _bytes_feature(value):
|
def _bytes_feature(value):
|
||||||
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
|
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
|
||||||
writer = tf.python_io.TFRecordWriter(output_path)
|
|
||||||
|
|
||||||
for sample in audio_samples:
|
writer = tf.python_io.TFRecordWriter('./outputs/' + audio_group + '.tfrecords')
|
||||||
|
audio_samples = audio_samples[:100]
|
||||||
|
for (i,sample) in audio_samples.iterrows():
|
||||||
|
spectrogram = generate_aiff_spectrogram(sample['file_path'])
|
||||||
|
spec_n = spectrogram.shape[0]
|
||||||
|
spec_w = spectrogram.shape[1]
|
||||||
|
spec = spectrogram.reshape(-1)
|
||||||
example = tf.train.Example(features=tf.train.Features(
|
example = tf.train.Example(features=tf.train.Features(
|
||||||
feature={
|
feature={
|
||||||
'label': _int64_feature([label]),
|
'word': _bytes_feature([sample['word'].encode('utf-8')]),
|
||||||
'path': _bytes_feature([image_path]),
|
'phoneme': _bytes_feature([sample['phonemes'].encode('utf-8')]),
|
||||||
'instance' : _bytes_feature([instance_id])
|
'voice': _bytes_feature([sample['voice'].encode('utf-8')]),
|
||||||
|
'language': _bytes_feature([sample['language'].encode('utf-8')]),
|
||||||
|
'rate':_int64_feature([sample['rate']]),
|
||||||
|
'variant': _bytes_feature([sample['variant'].encode('utf-8')]),
|
||||||
|
'file': _bytes_feature([sample['file'].encode('utf-8')]),
|
||||||
|
'spec':_float_feature(spec),
|
||||||
|
'spec_n':_int64_feature([spec_n]),
|
||||||
|
'spec_w':_int64_feature([spec_w])
|
||||||
}
|
}
|
||||||
))
|
))
|
||||||
writer.write(example.SerializeToString())
|
writer.write(example.SerializeToString())
|
||||||
writer.close()
|
writer.close()
|
||||||
|
|
||||||
def create_tagged_data(audio_samples):
|
def create_tagged_data(audio_samples):
|
||||||
|
|
@ -177,7 +191,8 @@ def speech_model_data():
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# sunflower_pairs_data()
|
# sunflower_pairs_data()
|
||||||
# create_spectrogram_data()
|
# create_spectrogram_data()
|
||||||
create_spectrogram_data('story_words')
|
# create_spectrogram_data('story_words')
|
||||||
|
create_spectrogram_tfrecords('story_words')
|
||||||
# create_padded_spectrogram()
|
# create_padded_spectrogram()
|
||||||
# create_speech_pairs_data()
|
# create_speech_pairs_data()
|
||||||
# print(speech_model_data())
|
# print(speech_model_data())
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue