trying to overfit the model to identify false-negative types

master
Malar Kannan 2017-11-10 17:52:21 +05:30
parent 1190312def
commit bb72c4045e
3 changed files with 135 additions and 47 deletions

77
requirements-linux.txt Normal file
View File

@ -0,0 +1,77 @@
bleach==1.5.0
click==6.7
cloudpickle==0.4.1
cycler==0.10.0
dask==0.15.4
decorator==4.1.2
distributed==1.19.3
entrypoints==0.2.3
enum34==1.1.6
futures==3.1.1
h5py==2.7.1
HeapDict==1.0.0
html5lib==0.9999999
ipykernel==4.6.1
ipython==6.2.1
ipython-genutils==0.2.0
ipywidgets==7.0.3
jedi==0.11.0
Jinja2==2.9.6
jsonschema==2.6.0
jupyter==1.0.0
jupyter-client==5.1.0
jupyter-console==5.2.0
jupyter-core==4.3.0
Keras==2.0.8
locket==0.2.0
Markdown==2.6.9
MarkupSafe==1.0
matplotlib==2.1.0
mistune==0.7.4
msgpack-python==0.4.8
nbconvert==5.3.1
nbformat==4.4.0
notebook==5.2.0
numexpr==2.6.4
numpy==1.13.3
pandas==0.20.3
pandocfilters==1.4.2
parso==0.1.0
partd==0.3.8
pexpect==4.2.1
pickleshare==0.7.4
pkg-resources==0.0.0
progressbar2==3.34.3
prompt-toolkit==1.0.15
protobuf==3.4.0
psutil==5.4.0
ptyprocess==0.5.2
PyAudio==0.2.11
Pygments==2.2.0
pyparsing==2.2.0
pysndfile==1.0.0
python-dateutil==2.6.1
python-utils==2.2.0
pytz==2017.2
PyYAML==3.12
pyzmq==16.0.2
qtconsole==4.3.1
scikit-learn==0.19.0
scipy==0.19.1
simplegeneric==0.8.1
six==1.11.0
sortedcontainers==1.5.7
tables==3.4.2
tblib==1.3.2
tensorflow==1.3.0
tensorflow-tensorboard==0.4.0rc1
terminado==0.6
testpath==0.3.1
toolz==0.8.2
tornado==4.5.2
tqdm==4.19.4
traitlets==4.3.2
wcwidth==0.1.7
Werkzeug==0.12.2
widgetsnbextension==3.0.6
zict==0.1.3

View File

@ -20,9 +20,10 @@ def siamese_pairs(rightGroup, wrongGroup):
group1 = [r for (i, r) in rightGroup.iterrows()] group1 = [r for (i, r) in rightGroup.iterrows()]
group2 = [r for (i, r) in wrongGroup.iterrows()] group2 = [r for (i, r) in wrongGroup.iterrows()]
rightWrongPairs = [(g1, g2) for g2 in group2 for g1 in group1] rightWrongPairs = [(g1, g2) for g2 in group2 for g1 in group1]
rightRightPairs = [i for i in itertools.combinations(group1, 2)] rightRightPairs = [i for i in itertools.combinations(group1, 2)]#+[i for i in itertools.combinations(group2, 2)]
random.shuffle(rightWrongPairs) # random.shuffle(rightWrongPairs)
random.shuffle(rightRightPairs) # random.shuffle(rightRightPairs)
# return rightRightPairs[:10],rightWrongPairs[:10]
return rightRightPairs[:32],rightWrongPairs[:32] return rightRightPairs[:32],rightWrongPairs[:32]
@ -45,8 +46,7 @@ def create_spectrogram_tfrecords(audio_group='audio',sample_count=0):
n_records,n_spec,n_features = 0,0,0 n_records,n_spec,n_features = 0,0,0
def write_samples(wg,sample_name): def write_samples(wg,sample_name):
wg_sampled = reservoir_sample(wg,sample_count) if sample_count > 0 else wg word_group_prog = tqdm(wg,desc='Computing spectrogram')
word_group_prog = tqdm(wg_sampled,desc='Computing spectrogram')
record_file = './outputs/{}.{}.tfrecords'.format(audio_group,sample_name) record_file = './outputs/{}.{}.tfrecords'.format(audio_group,sample_name)
writer = tf.python_io.TFRecordWriter(record_file) writer = tf.python_io.TFRecordWriter(record_file)
for (w, word_group) in word_group_prog: for (w, word_group) in word_group_prog:
@ -100,7 +100,8 @@ def create_spectrogram_tfrecords(audio_group='audio',sample_count=0):
writer.close() writer.close()
word_groups = [i for i in audio_samples.groupby('word')] word_groups = [i for i in audio_samples.groupby('word')]
tr_audio_samples,te_audio_samples = train_test_split(word_groups,test_size=0.1) wg_sampled = reservoir_sample(word_groups,sample_count) if sample_count > 0 else word_groups
tr_audio_samples,te_audio_samples = train_test_split(wg_sampled,test_size=0.1)
write_samples(tr_audio_samples,'train') write_samples(tr_audio_samples,'train')
write_samples(te_audio_samples,'test') write_samples(te_audio_samples,'test')
const_file = os.path.join('./outputs',audio_group+'.constants') const_file = os.path.join('./outputs',audio_group+'.constants')
@ -124,7 +125,7 @@ def reservoir_sample(iterable, k):
sample[j] = item # replace item with gradually decreasing probability sample[j] = item # replace item with gradually decreasing probability
return sample return sample
def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,sample_size=100): def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,test_size=100):
records_file = os.path.join('./outputs',audio_group+'.train.tfrecords') records_file = os.path.join('./outputs',audio_group+'.train.tfrecords')
input_pairs = [] input_pairs = []
output_class = [] output_class = []
@ -160,13 +161,14 @@ def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,sample_si
# Read test in one-shot # Read test in one-shot
te_records_file = os.path.join('./outputs',audio_group+'.test.tfrecords') te_records_file = os.path.join('./outputs',audio_group+'.test.tfrecords')
te_re_iterator = tf.python_io.tf_record_iterator(path=records_file) te_re_iterator = tf.python_io.tf_record_iterator(path=records_file)
te_n_records = len([i for i in te_re_iterator])
te_re_iterator = tf.python_io.tf_record_iterator(path=records_file)
print('reading tfrecords({}-test)...'.format(audio_group)) print('reading tfrecords({}-test)...'.format(audio_group))
samples = min([sample_size,n_records]) test_size = min([test_size,te_n_records]) if test_size > 0 else te_n_records
# samples = n_records input_data = np.zeros((test_size,2,n_spec,n_features))
input_data = np.zeros((samples,2,n_spec,n_features)) output_data = np.zeros((test_size,2))
output_data = np.zeros((samples,2)) random_samples = enumerate(reservoir_sample(te_re_iterator,test_size))
random_samples = enumerate(reservoir_sample(te_re_iterator,samples)) for (i,string_record) in tqdm(random_samples,total=test_size):
for (i,string_record) in tqdm(random_samples,total=samples):
example = tf.train.Example() example = tf.train.Example()
example.ParseFromString(string_record) example.ParseFromString(string_record)
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0] spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
@ -187,7 +189,7 @@ def audio_samples_word_count(audio_group='audio'):
return len(audio_samples.groupby(audio_samples['word'])) return len(audio_samples.groupby(audio_samples['word']))
def fix_csv(audio_group='audio'): def fix_csv(audio_group='audio'):
audio_csv_lines = open('./outputs/' + audio_group + '.csv','r').readlines() audio_csv_lines = open('./outputs/' + audio_group + '.csv.orig','r').readlines()
audio_csv_data = [i.strip().split(',') for i in audio_csv_lines] audio_csv_data = [i.strip().split(',') for i in audio_csv_lines]
proper_rows = [i for i in audio_csv_data if len(i) == 7] proper_rows = [i for i in audio_csv_data if len(i) == 7]
with open('./outputs/' + audio_group + '.csv','w') as fixed_csv: with open('./outputs/' + audio_group + '.csv','w') as fixed_csv:
@ -220,10 +222,13 @@ if __name__ == '__main__':
# read_siamese_tfrecords('story_all') # read_siamese_tfrecords('story_all')
# read_siamese_tfrecords('story_words_test') # read_siamese_tfrecords('story_words_test')
# padd_zeros_siamese_tfrecords('story_words') # padd_zeros_siamese_tfrecords('story_words')
# fix_csv() # fix_csv('story_words')
# pickle_constants('story_words') # pickle_constants('story_words')
# create_spectrogram_tfrecords('audio',sample_count=100) # create_spectrogram_tfrecords('audio',sample_count=100)
read_siamese_tfrecords_generator('audio') # create_spectrogram_tfrecords('story_all',sample_count=25)
create_spectrogram_tfrecords('story_words',sample_count=10)
# create_spectrogram_tfrecords('audio',sample_count=50)
# read_siamese_tfrecords_generator('audio')
# padd_zeros_siamese_tfrecords('audio') # padd_zeros_siamese_tfrecords('audio')
# create_padded_spectrogram() # create_padded_spectrogram()
# create_speech_pairs_data() # create_speech_pairs_data()

View File

@ -2,7 +2,7 @@ from __future__ import absolute_import
from __future__ import print_function from __future__ import print_function
import numpy as np import numpy as np
# from speech_data import speech_model_data # from speech_data import speech_model_data
from speech_data import read_siamese_tfrecords_oneshot,read_siamese_tfrecords_generator from speech_data import read_siamese_tfrecords_generator
from keras.models import Model,load_model from keras.models import Model,load_model
from keras.layers import Input, Dense, Dropout, LSTM, Lambda, Concatenate from keras.layers import Input, Dense, Dropout, LSTM, Lambda, Concatenate
from keras.losses import categorical_crossentropy from keras.losses import categorical_crossentropy
@ -14,42 +14,46 @@ from keras.callbacks import TensorBoard, ModelCheckpoint
from keras import backend as K from keras import backend as K
def create_dir(direc): def create_dir(direc):
import os
if not os.path.exists(direc): if not os.path.exists(direc):
os.makedirs(direc) os.makedirs(direc)
def euclidean_distance(vects): # def euclidean_distance(vects):
x, y = vects # x, y = vects
return K.sqrt( # return K.sqrt(
K.maximum(K.sum(K.square(x - y), axis=1, keepdims=True), K.epsilon())) # K.maximum(K.sum(K.square(x - y), axis=1, keepdims=True), K.epsilon()))
#
#
def eucl_dist_output_shape(shapes): # def eucl_dist_output_shape(shapes):
shape1, shape2 = shapes # shape1, shape2 = shapes
return (shape1[0], 1) # return (shape1[0], 1)
#
#
def contrastive_loss(y_true, y_pred): # def contrastive_loss(y_true, y_pred):
'''Contrastive loss from Hadsell-et-al.'06 # '''Contrastive loss from Hadsell-et-al.'06
http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf # http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
''' # '''
return K.mean(y_true * K.square(y_pred) + # return K.mean(y_true * K.square(y_pred) +
(1 - y_true) * K.square(K.maximum(1 - y_pred, 0))) # (1 - y_true) * K.square(K.maximum(1 - y_pred, 0)))
def create_base_rnn_network(input_dim): def create_base_rnn_network(input_dim):
'''Base network to be shared (eq. to feature extraction). '''Base network to be shared (eq. to feature extraction).
''' '''
inp = Input(shape=input_dim) inp = Input(shape=input_dim)
ls1 = LSTM(256, return_sequences=True)(inp) ls0 = LSTM(512, return_sequences=True)(inp)
ls1 = LSTM(256, return_sequences=True)(ls0)
ls2 = LSTM(128, return_sequences=True)(ls1) ls2 = LSTM(128, return_sequences=True)(ls1)
# ls3 = LSTM(32, return_sequences=True)(ls2) # ls3 = LSTM(32, return_sequences=True)(ls2)
ls4 = LSTM(64)(ls2) ls4 = LSTM(64)(ls2)
d1 = Dense(128, activation='relu')(ls4)
d2 = Dense(64, activation='relu')(d1)
return Model(inp, ls4) return Model(inp, ls4)
def compute_accuracy(y_true, y_pred): def compute_accuracy(y_true, y_pred):
'''Compute classification accuracy with a fixed threshold on distances. '''Compute classification accuracy with a fixed threshold on distances.
''' '''
pred = y_pred.ravel() < 0.5 pred = y_pred.ravel() > 0.5
return np.mean(pred == y_true) return np.mean(pred == y_true)
@ -60,11 +64,12 @@ def accuracy(y_true, y_pred):
def dense_classifier(processed): def dense_classifier(processed):
conc_proc = Concatenate()(processed) conc_proc = Concatenate()(processed)
d1 = Dense(16, activation='relu')(conc_proc) d1 = Dense(64, activation='relu')(conc_proc)
# dr1 = Dropout(0.1)(d1) # dr1 = Dropout(0.1)(d1)
d2 = Dense(8, activation='relu')(d1) d2 = Dense(128, activation='relu')(d1)
d3 = Dense(8, activation='relu')(d2)
# dr2 = Dropout(0.1)(d2) # dr2 = Dropout(0.1)(d2)
return Dense(2, activation='softmax')(d2) return Dense(2, activation='softmax')(d3)
def siamese_model(input_dim): def siamese_model(input_dim):
# input_dim = (15, 1654) # input_dim = (15, 1654)
@ -85,10 +90,10 @@ def siamese_model(input_dim):
def train_siamese(audio_group = 'audio'): def train_siamese(audio_group = 'audio'):
# the data, shuffled and split between train and test sets # the data, shuffled and split between train and test sets
# tr_pairs, te_pairs, tr_y_e, te_y_e = speech_model_data() # tr_pairs, te_pairs, tr_y_e, te_y_e = speech_model_data()
batch_size = 512 batch_size = 128
model_dir = './models/'+audio_group model_dir = './models/'+audio_group
create_dir(model_dir) create_dir(model_dir)
tr_gen_fn,te_pairs,te_y,n_step,n_features,n_records = read_siamese_tfrecords_generator(audio_group,batch_size,300) tr_gen_fn,te_pairs,te_y,n_step,n_features,n_records = read_siamese_tfrecords_generator(audio_group,batch_size,256)
tr_gen = tr_gen_fn() tr_gen = tr_gen_fn()
# tr_y = to_categorical(tr_y_e, num_classes=2) # tr_y = to_categorical(tr_y_e, num_classes=2)
# te_y = to_categorical(te_y_e, num_classes=2) # te_y = to_categorical(te_y_e, num_classes=2)
@ -113,12 +118,12 @@ def train_siamese(audio_group = 'audio'):
cp_file_fmt, cp_file_fmt,
monitor='val_loss', monitor='val_loss',
verbose=0, verbose=0,
save_best_only=False, save_best_only=True,
save_weights_only=False, save_weights_only=True,
mode='auto', mode='auto',
period=1) period=1)
# train # train
rms = RMSprop(lr=0.001) rms = RMSprop()#lr=0.001
model.compile(loss=categorical_crossentropy, optimizer=rms, metrics=[accuracy]) model.compile(loss=categorical_crossentropy, optimizer=rms, metrics=[accuracy])
# model.fit( # model.fit(
# [tr_pairs[:, 0], tr_pairs[:, 1]], # [tr_pairs[:, 0], tr_pairs[:, 1]],
@ -128,11 +133,11 @@ def train_siamese(audio_group = 'audio'):
# validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y), # validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y),
# callbacks=[tb_cb, cp_cb]) # callbacks=[tb_cb, cp_cb])
model.fit_generator(tr_gen model.fit_generator(tr_gen
,epochs=100 ,epochs=1000
,steps_per_epoch=n_records//batch_size ,steps_per_epoch=n_records//batch_size
,validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y) ,validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y)
,use_multiprocessing=True) ,use_multiprocessing=True)
# ,callbacks=[tb_cb, cp_cb])
model.save(model_dir+'/siamese_speech_model-final.h5') model.save(model_dir+'/siamese_speech_model-final.h5')
# compute final accuracy on training and test sets # compute final accuracy on training and test sets
# y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]]) # y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]])
@ -146,4 +151,5 @@ def train_siamese(audio_group = 'audio'):
if __name__ == '__main__': if __name__ == '__main__':
train_siamese() train_siamese('story_words')
# train_siamese('audio')