diff --git a/segment_data.py b/segment_data.py index 9d95f57..51530f5 100644 --- a/segment_data.py +++ b/segment_data.py @@ -156,8 +156,8 @@ def create_segments_tfrecords(collection_name='story_test_segments',sample_count f_bounds = [spec_frame(phrase_spec,b) for b in ph_bounds] valid_bounds = [i for i in f_bounds if 0 < i < spec_n] b_frames = np.asarray(valid_bounds) - # print(spec_n,b_frames) - result[b_frames] = 1 + if len(b_frames) > 0: + result[b_frames] = 1 nonlocal n_records,n_spec,n_features n_spec = max([n_spec,spec_n]) n_features = spec_w @@ -178,9 +178,10 @@ def create_segments_tfrecords(collection_name='story_test_segments',sample_count word_groups = [i for i in audio_samples.groupby('phrase')] wg_sampled = reservoir_sample(word_groups,sample_count) if sample_count > 0 else word_groups + # write_samples(word_groups,'all') tr_audio_samples,te_audio_samples = train_test_split(wg_sampled,test_size=train_test_ratio) write_samples(tr_audio_samples,'train') - # write_samples(te_audio_samples,'test') + write_samples(te_audio_samples,'test') const_file = './outputs/segments/'+collection_name+'/constants.pkl' pickle.dump((n_spec,n_features,n_records),open(const_file,'wb')) @@ -257,7 +258,7 @@ if __name__ == '__main__': # plot_segments('story_test_segments') # fix_csv('story_phrases') # pass - create_segments_tfrecords('story_phrases', sample_count=100) + create_segments_tfrecords('story_phrases_full', sample_count=0) # record_generator,input_data,output_data,copy_read_consts = read_segments_tfrecords_generator('story_test') # tr_gen = record_generator() # for i in tr_gen: diff --git a/segment_model.py b/segment_model.py index 7fc5be3..ce0c6cf 100644 --- a/segment_model.py +++ b/segment_model.py @@ -36,21 +36,16 @@ def ctc_lambda_func(args): return K.ctc_batch_cost(labels, y_pred, input_length, label_length) def segment_model(input_dim): - # input_dim = (100,100,1) inp = Input(shape=input_dim) cnv1 = Conv2D(filters=32, kernel_size=(5,9))(inp) cnv2 = Conv2D(filters=1, kernel_size=(5,9))(cnv1) dr_cnv2 = Dropout(rate=0.95)(cnv2) - # dr_cnv2 cn_rnn_dim = (dr_cnv2.shape[1].value,dr_cnv2.shape[2].value) r_dr_cnv2 = Reshape(target_shape=cn_rnn_dim)(dr_cnv2) b_gr1 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(r_dr_cnv2) - # b_gr1 b_gr2 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(b_gr1) b_gr3 = Bidirectional(GRU(512, return_sequences=True),merge_mode='sum')(b_gr2) - # b_gr3 oup = Dense(2, activation='softmax')(b_gr3) - # oup return Model(inp, oup) def simple_segment_model(input_dim):