avoiding same voice similar variants

master
Malar Kannan 2017-11-13 17:33:37 +05:30
parent d978272bdb
commit 988f66c2c2
6 changed files with 148 additions and 44 deletions

View File

@ -1,25 +0,0 @@
import multiprocessing
import pandas as pd
import numpy as np
def _apply_df(args):
df, func, num, kwargs = args
return num, df.apply(func, **kwargs)
def apply_by_multiprocessing(df,func,**kwargs):
cores = multiprocessing.cpu_count()
workers=kwargs.pop('workers') if 'workers' in kwargs else cores
pool = multiprocessing.Pool(processes=workers)
result = pool.map(_apply_df, [(d, func, i, kwargs) for i,d in enumerate(np.array_split(df, workers))])
pool.close()
result=sorted(result,key=lambda x:x[0])
return pd.concat([i[1] for i in result])
def square(x):
return x**x
if __name__ == '__main__':
df = pd.DataFrame({'a':range(10), 'b':range(10)})
apply_by_multiprocessing(df, square, axis=1, workers=4)

View File

@ -40,7 +40,6 @@ parso==0.1.0
partd==0.3.8 partd==0.3.8
pexpect==4.2.1 pexpect==4.2.1
pickleshare==0.7.4 pickleshare==0.7.4
pkg-resources==0.0.0
progressbar2==3.34.3 progressbar2==3.34.3
prompt-toolkit==1.0.15 prompt-toolkit==1.0.15
protobuf==3.4.0 protobuf==3.4.0

View File

@ -1,5 +1,6 @@
import pandas as pd import pandas as pd
from pandas_parallel import apply_by_multiprocessing from speech_utils import apply_by_multiprocessing
from speech_utils import threadsafe_iter
# import dask as dd # import dask as dd
# import dask.dataframe as ddf # import dask.dataframe as ddf
import tensorflow as tf import tensorflow as tf
@ -36,7 +37,7 @@ def _int64_feature(value):
def _bytes_feature(value): def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value)) return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
def create_spectrogram_tfrecords(audio_group='audio',sample_count=0): def create_spectrogram_tfrecords(audio_group='audio',sample_count=0,train_test_ratio=0.1):
''' '''
http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/ http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/
http://www.machinelearninguru.com/deep_learning/tensorflow/basics/tfrecord/tfrecord.html http://www.machinelearninguru.com/deep_learning/tensorflow/basics/tfrecord/tfrecord.html
@ -60,6 +61,13 @@ def create_spectrogram_tfrecords(audio_group='audio',sample_count=0):
for (output,group) in groups: for (output,group) in groups:
group_prog = tqdm(group,desc='Writing Spectrogram') group_prog = tqdm(group,desc='Writing Spectrogram')
for sample1,sample2 in group_prog: for sample1,sample2 in group_prog:
same = sample1['variant'] == sample2['variant']
phon_same = sample1['phonemes'] == sample2['phonemes']
voice_diff = sample1['voice'] != sample2['voice']
if not same and phon_same:
continue
if same and not voice_diff:
continue
group_prog.set_postfix(output=output group_prog.set_postfix(output=output
,var1=sample1['variant'] ,var1=sample1['variant']
,var2=sample2['variant']) ,var2=sample2['variant'])
@ -101,7 +109,7 @@ def create_spectrogram_tfrecords(audio_group='audio',sample_count=0):
word_groups = [i for i in audio_samples.groupby('word')] word_groups = [i for i in audio_samples.groupby('word')]
wg_sampled = reservoir_sample(word_groups,sample_count) if sample_count > 0 else word_groups wg_sampled = reservoir_sample(word_groups,sample_count) if sample_count > 0 else word_groups
tr_audio_samples,te_audio_samples = train_test_split(wg_sampled,test_size=0.1) tr_audio_samples,te_audio_samples = train_test_split(wg_sampled,test_size=train_test_ratio)
write_samples(tr_audio_samples,'train') write_samples(tr_audio_samples,'train')
write_samples(te_audio_samples,'test') write_samples(te_audio_samples,'test')
const_file = os.path.join('./outputs',audio_group+'.constants') const_file = os.path.join('./outputs',audio_group+'.constants')
@ -125,13 +133,16 @@ def reservoir_sample(iterable, k):
sample[j] = item # replace item with gradually decreasing probability sample[j] = item # replace item with gradually decreasing probability
return sample return sample
def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,test_size=100):
def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,test_size=0):
records_file = os.path.join('./outputs',audio_group+'.train.tfrecords') records_file = os.path.join('./outputs',audio_group+'.train.tfrecords')
input_pairs = [] input_pairs = []
output_class = [] output_class = []
const_file = os.path.join('./outputs',audio_group+'.constants') const_file = os.path.join('./outputs',audio_group+'.constants')
(n_spec,n_features,n_records) = pickle.load(open(const_file,'rb')) (n_spec,n_features,n_records) = pickle.load(open(const_file,'rb'))
print('reading tfrecords({}-train)...'.format(audio_group)) print('reading tfrecords({}-train)...'.format(audio_group))
# @threadsafe_iter
def record_generator(): def record_generator():
input_data = [] input_data = []
output_data = [] output_data = []
@ -226,7 +237,7 @@ if __name__ == '__main__':
# pickle_constants('story_words') # pickle_constants('story_words')
# create_spectrogram_tfrecords('audio',sample_count=100) # create_spectrogram_tfrecords('audio',sample_count=100)
# create_spectrogram_tfrecords('story_all',sample_count=25) # create_spectrogram_tfrecords('story_all',sample_count=25)
create_spectrogram_tfrecords('story_words',sample_count=10) create_spectrogram_tfrecords('story_words',sample_count=10,train_test_ratio=0.2)
# create_spectrogram_tfrecords('audio',sample_count=50) # create_spectrogram_tfrecords('audio',sample_count=50)
# read_siamese_tfrecords_generator('audio') # read_siamese_tfrecords_generator('audio')
# padd_zeros_siamese_tfrecords('audio') # padd_zeros_siamese_tfrecords('audio')

View File

@ -12,11 +12,7 @@ from keras.utils import to_categorical
from keras.optimizers import RMSprop from keras.optimizers import RMSprop
from keras.callbacks import TensorBoard, ModelCheckpoint from keras.callbacks import TensorBoard, ModelCheckpoint
from keras import backend as K from keras import backend as K
from speech_utils import create_dir
def create_dir(direc):
import os
if not os.path.exists(direc):
os.makedirs(direc)
# def euclidean_distance(vects): # def euclidean_distance(vects):
# x, y = vects # x, y = vects
@ -95,7 +91,7 @@ def train_siamese(audio_group = 'audio'):
create_dir(model_dir) create_dir(model_dir)
log_dir = './logs/'+audio_group log_dir = './logs/'+audio_group
create_dir(log_dir) create_dir(log_dir)
tr_gen_fn,te_pairs,te_y,n_step,n_features,n_records = read_siamese_tfrecords_generator(audio_group,batch_size,256) tr_gen_fn,te_pairs,te_y,n_step,n_features,n_records = read_siamese_tfrecords_generator(audio_group,batch_size=batch_size)
tr_gen = tr_gen_fn() tr_gen = tr_gen_fn()
# tr_y = to_categorical(tr_y_e, num_classes=2) # tr_y = to_categorical(tr_y_e, num_classes=2)
# te_y = to_categorical(te_y_e, num_classes=2) # te_y = to_categorical(te_y_e, num_classes=2)
@ -138,7 +134,7 @@ def train_siamese(audio_group = 'audio'):
,epochs=1000 ,epochs=1000
,steps_per_epoch=n_records//batch_size ,steps_per_epoch=n_records//batch_size
,validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y) ,validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y)
,use_multiprocessing=True ,use_multiprocessing=True, workers=1
,callbacks=[tb_cb, cp_cb]) ,callbacks=[tb_cb, cp_cb])
model.save(model_dir+'/siamese_speech_model-final.h5') model.save(model_dir+'/siamese_speech_model-final.h5')
# compute final accuracy on training and test sets # compute final accuracy on training and test sets

74
speech_utils.py Normal file
View File

@ -0,0 +1,74 @@
import os
import threading
import multiprocessing
import pandas as pd
import numpy as np
def _apply_df(args):
df, func, num, kwargs = args
return num, df.apply(func, **kwargs)
def apply_by_multiprocessing(df,func,**kwargs):
cores = multiprocessing.cpu_count()
workers=kwargs.pop('workers') if 'workers' in kwargs else cores
pool = multiprocessing.Pool(processes=workers)
result = pool.map(_apply_df, [(d, func, i, kwargs) for i,d in enumerate(np.array_split(df, workers))])
pool.close()
result=sorted(result,key=lambda x:x[0])
return pd.concat([i[1] for i in result])
def square(x):
return x**x
if __name__ == '__main__':
df = pd.DataFrame({'a':range(10), 'b':range(10)})
apply_by_multiprocessing(df, square, axis=1, workers=4)
def rm_rf(d):
for path in (os.path.join(d,f) for f in os.listdir(d)):
if os.path.isdir(path):
rm_rf(path)
else:
os.unlink(path)
os.rmdir(d)
def create_dir(direc):
if not os.path.exists(direc):
os.makedirs(direc)
else:
rm_rf(direc)
create_dir(direc)
#################### Now make the data generator threadsafe ####################
class threadsafe_iter:
"""Takes an iterator/generator and makes it thread-safe by
serializing call to the `next` method of given iterator/generator.
"""
def __init__(self, it):
self.it = it
self.lock = threading.Lock()
def __iter__(self):
return self
def __next__(self): # Py3
with self.lock:
return next(self.it)
def next(self): # Py2
with self.lock:
return self.it.next()
def threadsafe_generator(f):
"""A decorator that takes a generator function and makes it thread-safe.
"""
def g(*a, **kw):
return threadsafe_iter(f(*a, **kw))
return g

View File

@ -1,13 +1,14 @@
from speech_siamese import siamese_model from speech_siamese import siamese_model
from record_mic_speech import record_spectrogram from record_mic_speech import record_spectrogram
from importlib import reload # from importlib import reload
# import speech_data # import speech_data
# reload(speech_data) # reload(speech_data)
from speech_data import create_test_pair,get_word_pairs_data,speech_data
import numpy as np import numpy as np
import os
model = siamese_model((15, 1654)) import pickle
model.load_weights('./models/siamese_speech_model-final.h5') import tensorflow as tf
import csv
from speech_data import padd_zeros
def predict_recording_with(m,sample_size=15): def predict_recording_with(m,sample_size=15):
spec1 = record_spectrogram(n_sec=1.4) spec1 = record_spectrogram(n_sec=1.4)
@ -24,7 +25,55 @@ def test_with(audio_group):
print(np.argmax(model.predict([X[:, 0], X[:, 1]]),axis=1)) print(np.argmax(model.predict([X[:, 0], X[:, 1]]),axis=1))
print(Y.astype(np.int8)) print(Y.astype(np.int8))
test_with('rand_edu') def evaluate_siamese(audio_group='audio',model_file = 'siamese_speech_model-46-epoch-0.29-acc.h5'):
records_file = os.path.join('./outputs',audio_group+'.train.tfrecords')
const_file = os.path.join('./outputs',audio_group+'.constants')
model_weights_path =os.path.join('./models/story_words/',model_file)
(n_spec,n_features,n_records) = pickle.load(open(const_file,'rb'))
print('evaluating tfrecords({}-train)...'.format(audio_group))
model = siamese_model((n_spec, n_features))
model.load_weights(model_weights_path)
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
#tqdm(enumerate(record_iterator),total=n_records)
with open('./outputs/' + audio_group + '.results.csv','w') as result_csv:
result_csv_w = csv.writer(result_csv, quoting=csv.QUOTE_MINIMAL)
for (i,string_record) in enumerate(record_iterator):
# string_record = next(record_iterator)
example = tf.train.Example()
example.ParseFromString(string_record)
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
spec_w2 = example.features.feature['spec_w2'].int64_list.value[0]
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
p_spec1,p_spec2 = padd_zeros(spec1,n_spec),padd_zeros(spec2,n_spec)
input_arr = np.asarray([[p_spec1,p_spec2]])
output_arr = np.asarray([example.features.feature['output'].int64_list.value])
y_pred = model.predict([input_arr[:, 0], input_arr[:, 1]])
predicted = np.asarray(y_pred[0]>0.5).astype(output_arr.dtype)
expected = output_arr[0]
if np.all(predicted == expected):
continue
word = example.features.feature['word'].bytes_list.value[0].decode()
phoneme1 = example.features.feature['phoneme1'].bytes_list.value[0].decode()
phoneme2 = example.features.feature['phoneme2'].bytes_list.value[0].decode()
voice1 = example.features.feature['voice1'].bytes_list.value[0].decode()
voice2 = example.features.feature['voice2'].bytes_list.value[0].decode()
language = example.features.feature['language'].bytes_list.value[0].decode()
rate1 = example.features.feature['rate1'].int64_list.value[0]
rate2 = example.features.feature['rate2'].int64_list.value[0]
variant1 = example.features.feature['variant1'].bytes_list.value[0].decode()
variant2 = example.features.feature['variant2'].bytes_list.value[0].decode()
file1 = example.features.feature['file1'].bytes_list.value[0].decode()
file2 = example.features.feature['file2'].bytes_list.value[0].decode()
print(phoneme1,phoneme2,voice1,voice2,rate1,rate2,variant1,variant2,file1,file2)
result_csv_w.writerow([phoneme1,phoneme2,voice1,voice2,rate1,rate2,variant1,variant2,file1,file2])
evaluate_siamese('story_words',model_file='siamese_speech_model-92-epoch-0.20-acc.h5')
# test_with('rand_edu')
# sunflower_data,sunflower_result = get_word_pairs_data('sweater',15) # sunflower_data,sunflower_result = get_word_pairs_data('sweater',15)
# print(np.argmax(model.predict([sunflower_data[:, 0], sunflower_data[:, 1]]),axis=1)) # print(np.argmax(model.predict([sunflower_data[:, 0], sunflower_data[:, 1]]),axis=1))
# print(sunflower_result) # print(sunflower_result)