diff --git a/speech_data.py b/speech_data.py index 2d1bb2c..5ccbeb6 100644 --- a/speech_data.py +++ b/speech_data.py @@ -56,20 +56,23 @@ def sunflower_pairs_data(): te_pairs = np.array([x_pos_test,x_neg_test]).reshape(x_pos_test.shape[0],2,max_samples,sample_size) return tr_pairs,te_pairs,tr_y,te_y +def create_spectrogram_data(): + audio_samples = pd.read_csv('./outputs/'+audio_group+'.csv',names=['word','voice','rate','variant','file']) + audio_samples.loc[:,'spectrogram'] = audio_samples.loc[:,'file'].apply(lambda x:'outputs/'+audio_group+'/'+x).apply(generate_aiff_spectrogram) + audio_samples.to_pickle('spectrogram.pkl') def speech_pairs_data(audio_group): - audio_samples = pd.read_csv('./outputs/'+audio_group+'.csv',names=['word','voice','rate','variant','file']) - audio_samples.loc[:,'file'] = audio_samples.loc[:,'file'].apply(lambda x:'outputs/'+audio_group+'/'+x).apply(generate_aiff_spectrogram) + audio_samples = pd.read_pickle('spectrogram.pkl') y_data = audio_samples['variant'].apply(lambda x:x=='normal').values - max_samples = audio_samples['file'].apply(lambda x:x.shape[0]).max() - sample_size = audio_samples['file'][0].shape[1] + max_samples = audio_samples['spectrogram'].apply(lambda x:x.shape[0]).max() + sample_size = audio_samples['spectrogram'][0].shape[1] audio_samples_pos = audio_samples[audio_samples['variant'] == 'normal'].reset_index(drop=True) audio_samples_neg = audio_samples[audio_samples['variant'] == 'phoneme'].reset_index(drop=True) def append_zeros(spgr): return np.lib.pad(spgr,[(0, max_samples-spgr.shape[0]), (0,0)],'median') def create_data(sf): - sample_count = sf['file'].shape[0] - pad_sun = sf['file'].apply(append_zeros).values + sample_count = sf['spectrogram'].shape[0] + pad_sun = sf['spectrogram'].apply(append_zeros).values x_data = np.vstack(pad_sun).reshape((sample_count,max_samples,sample_size)) return x_data x_data_pos = create_data(audio_samples_pos) @@ -82,4 +85,5 @@ def speech_pairs_data(audio_group): return tr_pairs,te_pairs,tr_y,te_y if __name__ == '__main__': + create_spectrogram_data() print(speech_pairs_data())