updated model to use dense classifier

master
Malar Kannan 2017-10-31 13:31:31 +05:30
parent 80c0ce403e
commit 6fbf06814c
2 changed files with 25 additions and 25 deletions

View File

@ -107,8 +107,8 @@ def create_speech_pairs_data(audio_group='audio'):
def speech_model_data(): def speech_model_data():
tr_pairs = np.load('outputs/tr_pairs.npy') / 255.0 tr_pairs = np.load('outputs/tr_pairs.npy') / 255.0
te_pairs = np.load('outputs/te_pairs.npy') / 255.0 te_pairs = np.load('outputs/te_pairs.npy') / 255.0
# tr_pairs[tr_pairs < 0] = 0 tr_pairs[tr_pairs < 0] = 0
# te_pairs[te_pairs < 0] = 0 te_pairs[te_pairs < 0] = 0
tr_y = np.load('outputs/tr_y.npy') tr_y = np.load('outputs/tr_y.npy')
te_y = np.load('outputs/te_y.npy') te_y = np.load('outputs/te_y.npy')
return tr_pairs, te_pairs, tr_y, te_y return tr_pairs, te_pairs, tr_y, te_y

View File

@ -3,7 +3,10 @@ from __future__ import print_function
import numpy as np import numpy as np
from speech_data import speech_model_data from speech_data import speech_model_data
from keras.models import Model,load_model from keras.models import Model,load_model
from keras.layers import Input, Dense, Dropout, LSTM, Lambda from keras.layers import Input, Dense, Dropout, LSTM, Lambda, Concatenate
# from keras.losses import categorical_crossentropy
from keras.losses import binary_crossentropy
# from keras.utils.np_utils import to_categorical
from keras.optimizers import RMSprop from keras.optimizers import RMSprop
from keras.callbacks import TensorBoard, ModelCheckpoint from keras.callbacks import TensorBoard, ModelCheckpoint
from keras import backend as K from keras import backend as K
@ -34,20 +37,9 @@ def create_base_rnn_network(input_dim):
inp = Input(shape=input_dim) inp = Input(shape=input_dim)
ls1 = LSTM(1024, return_sequences=True)(inp) ls1 = LSTM(1024, return_sequences=True)(inp)
ls2 = LSTM(512, return_sequences=True)(ls1) ls2 = LSTM(512, return_sequences=True)(ls1)
ls3 = LSTM(32)(ls2) # ls3 = LSTM(32, return_sequences=True)(ls2)
return Model(inp, ls3) ls4 = LSTM(32)(ls2)
return Model(inp, ls4)
def create_base_network(input_dim):
'''Base network to be shared (eq. to feature extraction).
'''
input = Input(shape=input_dim)
x = Dense(128, activation='relu')(input)
x = Dropout(0.1)(x)
x = Dense(128, activation='relu')(x)
x = Dropout(0.1)(x)
x = Dense(128, activation='relu')(x)
return Model(input, x)
def compute_accuracy(y_true, y_pred): def compute_accuracy(y_true, y_pred):
@ -62,6 +54,13 @@ def accuracy(y_true, y_pred):
''' '''
return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype))) return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype)))
def dense_classifier(processed):
conc_proc = Concatenate()(processed)
d1 = Dense(8, activation='relu')(conc_proc)
dr1 = Dropout(0.1)(d1)
# d2 = Dense(8, activation='relu')(dr1)
# dr2 = Dropout(0.1)(d2)
return Dense(1, activation='sigmoid')(dr1)
def siamese_model(input_dim): def siamese_model(input_dim):
# input_dim = (15, 1654) # input_dim = (15, 1654)
@ -70,11 +69,12 @@ def siamese_model(input_dim):
input_b = Input(shape=input_dim) input_b = Input(shape=input_dim)
processed_a = base_network(input_a) processed_a = base_network(input_a)
processed_b = base_network(input_b) processed_b = base_network(input_b)
distance = Lambda( final_output = dense_classifier([processed_a,processed_b])
euclidean_distance, model = Model([input_a, input_b], final_output)
output_shape=eucl_dist_output_shape)([processed_a, processed_b]) # distance = Lambda(
# euclidean_distance,
model = Model([input_a, input_b], distance) # output_shape=eucl_dist_output_shape)([processed_a, processed_b])
# model = Model([input_a, input_b], distance)
return model return model
@ -95,12 +95,12 @@ def train_siamese():
embeddings_freq=0, embeddings_freq=0,
embeddings_layer_names=None, embeddings_layer_names=None,
embeddings_metadata=None) embeddings_metadata=None)
cp_file_fmt = './models/siamese_speech_model-{epoch:02d}-epoch-{val_acc:0.2f}\ cp_file_fmt = './models/siamese_speech_model-{epoch:02d}-epoch-{val_loss:0.2f}\
-acc.h5' -acc.h5'
cp_cb = ModelCheckpoint( cp_cb = ModelCheckpoint(
cp_file_fmt, cp_file_fmt,
monitor='val_acc', monitor='val_loss',
verbose=0, verbose=0,
save_best_only=False, save_best_only=False,
save_weights_only=False, save_weights_only=False,
@ -108,7 +108,7 @@ def train_siamese():
period=1) period=1)
# train # train
rms = RMSprop(lr=0.001) rms = RMSprop(lr=0.001)
model.compile(loss=contrastive_loss, optimizer=rms, metrics=[accuracy]) model.compile(loss=binary_crossentropy, optimizer=rms, metrics=[accuracy])
model.fit( model.fit(
[tr_pairs[:, 0], tr_pairs[:, 1]], [tr_pairs[:, 0], tr_pairs[:, 1]],
tr_y, tr_y,