using csv writer instead as comma in phrases are mis-aligning columns
parent
15f29895d4
commit
55e2de2f04
134
speech_data.py
134
speech_data.py
|
|
@ -11,17 +11,11 @@ import os
|
||||||
import random
|
import random
|
||||||
import csv
|
import csv
|
||||||
import gc
|
import gc
|
||||||
|
import progressbar
|
||||||
|
|
||||||
def get_siamese_pairs(groupF1, groupF2):
|
def prog_bar(title):
|
||||||
group1 = [r for (i, r) in groupF1.iterrows()]
|
widgets = [title, progressbar.Counter(), ' [', progressbar.Bar(), '] - ', progressbar.ETA()]
|
||||||
group2 = [r for (i, r) in groupF2.iterrows()]
|
return progressbar.ProgressBar(widgets=widgets)
|
||||||
diff = [(g1, g2) for g2 in group2 for g1 in group1]
|
|
||||||
same = [i for i in itertools.combinations(group1, 2)
|
|
||||||
] + [i for i in itertools.combinations(group2, 2)]
|
|
||||||
random.shuffle(same)
|
|
||||||
random.shuffle(diff)
|
|
||||||
# return (random.sample(same,10), random.sample(diff,10))
|
|
||||||
return same[:10],diff[:10]
|
|
||||||
|
|
||||||
def siamese_pairs(rightGroup, wrongGroup):
|
def siamese_pairs(rightGroup, wrongGroup):
|
||||||
group1 = [r for (i, r) in rightGroup.iterrows()]
|
group1 = [r for (i, r) in rightGroup.iterrows()]
|
||||||
|
|
@ -32,73 +26,8 @@ def siamese_pairs(rightGroup, wrongGroup):
|
||||||
random.shuffle(rightRightPairs)
|
random.shuffle(rightRightPairs)
|
||||||
# return (random.sample(same,10), random.sample(diff,10))
|
# return (random.sample(same,10), random.sample(diff,10))
|
||||||
# return rightRightPairs[:10],rightWrongPairs[:10]
|
# return rightRightPairs[:10],rightWrongPairs[:10]
|
||||||
return rightRightPairs,rightWrongPairs
|
return rightRightPairs[:32],rightWrongPairs[:32]
|
||||||
|
# return rightRightPairs,rightWrongPairs
|
||||||
def append_zeros(spgr, max_samples):
|
|
||||||
return np.lib.pad(spgr, [(0, max_samples - spgr.shape[0]), (0, 0)],
|
|
||||||
'median')
|
|
||||||
|
|
||||||
def padd_zeros(spgr, max_samples):
|
|
||||||
return np.lib.pad(spgr, [(0, max_samples - spgr.shape[0]), (0, 0)],
|
|
||||||
'constant')
|
|
||||||
|
|
||||||
def to_onehot(a,class_count=2):
|
|
||||||
a_row_n = a.shape[0]
|
|
||||||
b = np.zeros((a_row_n, class_count))
|
|
||||||
b[np.arange(a_row_n), a] = 1
|
|
||||||
return b
|
|
||||||
|
|
||||||
def create_pair(l, r, max_samples):
|
|
||||||
l_sample = padd_zeros(l, max_samples)
|
|
||||||
r_sample = padd_zeros(r, max_samples)
|
|
||||||
return np.asarray([l_sample, r_sample])
|
|
||||||
|
|
||||||
|
|
||||||
def create_test_pair(l, r, max_samples):
|
|
||||||
l_sample = append_zeros(l, max_samples)
|
|
||||||
r_sample = append_zeros(r, max_samples)
|
|
||||||
return np.asarray([[l_sample, r_sample]])
|
|
||||||
|
|
||||||
|
|
||||||
def create_X(sp, max_samples):
|
|
||||||
return create_pair(sp[0]['spectrogram'], sp[1]['spectrogram'], max_samples)
|
|
||||||
|
|
||||||
|
|
||||||
# def get_word_pairs_data(word, max_samples):
|
|
||||||
# audio_samples = pd.read_csv(
|
|
||||||
# './outputs/audio.csv',
|
|
||||||
# names=['word', 'voice', 'rate', 'variant', 'file'])
|
|
||||||
# audio_samples = audio_samples.loc[audio_samples['word'] ==
|
|
||||||
# word].reset_index(drop=True)
|
|
||||||
# audio_samples.loc[:, 'spectrogram'] = audio_samples.loc[:, 'file'].apply(
|
|
||||||
# lambda x: 'outputs/audio/' + x).apply(generate_aiff_spectrogram)
|
|
||||||
# max_samples = audio_samples['spectrogram'].apply(
|
|
||||||
# lambda x: x.shape[0]).max()
|
|
||||||
# same_data, diff_data = [], []
|
|
||||||
# for (w, g) in audio_samples.groupby(audio_samples['word']):
|
|
||||||
# sample_norm = g.loc[audio_samples['variant'] == 'normal']
|
|
||||||
# sample_phon = g.loc[audio_samples['variant'] == 'phoneme']
|
|
||||||
# same, diff = get_siamese_pairs(sample_norm, sample_phon)
|
|
||||||
# same_data.extend([create_X(s, max_samples) for s in same])
|
|
||||||
# diff_data.extend([create_X(d, max_samples) for d in diff])
|
|
||||||
# Y = np.hstack([np.ones(len(same_data)), np.zeros(len(diff_data))])
|
|
||||||
# X = np.asarray(same_data + diff_data)
|
|
||||||
# # tr_pairs, te_pairs, tr_y, te_y = train_test_split(X, Y, test_size=0.1)
|
|
||||||
# return (X, Y)
|
|
||||||
|
|
||||||
|
|
||||||
def create_spectrogram_data(audio_group='audio'):
|
|
||||||
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv'
|
|
||||||
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']
|
|
||||||
, quoting=csv.QUOTE_NONE)
|
|
||||||
# audio_samples = audio_samples.loc[audio_samples['word'] ==
|
|
||||||
# 'sunflowers'].reset_index(drop=True)
|
|
||||||
audio_samples['file_paths'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
|
|
||||||
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_paths'], os.path.exists)
|
|
||||||
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
|
|
||||||
audio_samples['spectrogram'] = apply_by_multiprocessing(audio_samples['file_paths'],generate_aiff_spectrogram)#.apply(
|
|
||||||
audio_samples['window_count'] = audio_samples.loc[:,'spectrogram'].apply(lambda x: x.shape[0])
|
|
||||||
audio_samples.to_pickle('outputs/{}-spectrogram.pkl'.format(audio_group))
|
|
||||||
|
|
||||||
def create_spectrogram_tfrecords(audio_group='audio'):
|
def create_spectrogram_tfrecords(audio_group='audio'):
|
||||||
'''
|
'''
|
||||||
|
|
@ -113,7 +42,9 @@ def create_spectrogram_tfrecords(audio_group='audio'):
|
||||||
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
|
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
|
||||||
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists)
|
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists)
|
||||||
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
|
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
|
||||||
|
audio_samples['rate_int'] = apply_by_multiprocessing(audio_samples['rate'], str.isdigit)
|
||||||
|
audio_samples = audio_samples[audio_samples['rate_int'] == True].reset_index().drop(['level_0'],axis=1)
|
||||||
|
audio_samples['rate'] = audio_samples['rate'].astype(int)
|
||||||
def _float_feature(value):
|
def _float_feature(value):
|
||||||
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
|
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
|
||||||
|
|
||||||
|
|
@ -124,7 +55,8 @@ def create_spectrogram_tfrecords(audio_group='audio'):
|
||||||
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
|
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
|
||||||
|
|
||||||
writer = tf.python_io.TFRecordWriter('./outputs/' + audio_group + '.tfrecords')
|
writer = tf.python_io.TFRecordWriter('./outputs/' + audio_group + '.tfrecords')
|
||||||
for (w, word_group) in audio_samples.groupby(audio_samples['word']):
|
prog = prog_bar('Generating siamese pairs : ')
|
||||||
|
for (w, word_group) in prog(audio_samples.groupby(audio_samples['word'])):
|
||||||
g = word_group.reset_index()
|
g = word_group.reset_index()
|
||||||
g['spectrogram'] = apply_by_multiprocessing(g['file_path'],generate_aiff_spectrogram)
|
g['spectrogram'] = apply_by_multiprocessing(g['file_path'],generate_aiff_spectrogram)
|
||||||
sample_right = g.loc[audio_samples['variant'] == 'low']
|
sample_right = g.loc[audio_samples['variant'] == 'low']
|
||||||
|
|
@ -186,24 +118,6 @@ def read_siamese_tfrecords(audio_group='audio'):
|
||||||
output_class.append(output)
|
output_class.append(output)
|
||||||
return input_pairs,output_class
|
return input_pairs,output_class
|
||||||
|
|
||||||
def create_speech_pairs_data(audio_group='audio'):
|
|
||||||
audio_samples = pd.read_pickle('outputs/{}-spectrogram.pkl'.format(audio_group))
|
|
||||||
# sample_size = audio_samples['spectrogram'][0].shape[1]
|
|
||||||
tr_audio_samples,te_audio_samples = train_test_split(audio_samples, test_size=0.1)
|
|
||||||
def save_samples_for(sample_name,samples):
|
|
||||||
print('generating {} siamese speech pairs'.format(sample_name))
|
|
||||||
X,Y = create_tagged_data(samples)
|
|
||||||
print('shuffling array speech pairs')
|
|
||||||
rng_state = np.random.get_state()
|
|
||||||
np.random.shuffle(X)
|
|
||||||
np.random.set_state(rng_state)
|
|
||||||
np.random.shuffle(Y)
|
|
||||||
print('pickling X/Y')
|
|
||||||
np.save('outputs/{}-train-X.npy'.format(audio_group), X)
|
|
||||||
np.save('outputs/{}-train-Y.npy'.format(audio_group), Y)
|
|
||||||
save_samples_for('train',tr_audio_samples)
|
|
||||||
save_samples_for('test',te_audio_samples)
|
|
||||||
|
|
||||||
def audio_samples_word_count(audio_group='audio'):
|
def audio_samples_word_count(audio_group='audio'):
|
||||||
audio_group = 'story_all'
|
audio_group = 'story_all'
|
||||||
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv'
|
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv'
|
||||||
|
|
@ -216,15 +130,23 @@ def audio_samples_word_count(audio_group='audio'):
|
||||||
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
|
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
|
||||||
return len(audio_samples.groupby(audio_samples['word']))
|
return len(audio_samples.groupby(audio_samples['word']))
|
||||||
|
|
||||||
def speech_model_data():
|
def fix_csv(audio_group='audio'):
|
||||||
tr_pairs = np.load('outputs/tr_pairs.npy') / 255.0
|
audio_group = 'story_all'
|
||||||
te_pairs = np.load('outputs/te_pairs.npy') / 255.0
|
audio_samples = pd.read_csv( './outputs/story_words.csv'
|
||||||
tr_pairs[tr_pairs < 0] = 0
|
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']
|
||||||
te_pairs[te_pairs < 0] = 0
|
, quoting=csv.QUOTE_NONE)
|
||||||
tr_y = np.load('outputs/tr_y.npy')
|
voice_set = set(audio_samples['voice'].unique().tolist())
|
||||||
te_y = np.load('outputs/te_y.npy')
|
audio_csv_lines = open('./outputs/' + audio_group + '.csv','r').readlines()
|
||||||
return tr_pairs, te_pairs, tr_y, te_y
|
audio_csv_data = [i.strip().split(',') for i in audio_csv_lines]
|
||||||
|
to_be_fixed = [i for i in audio_csv_data if len(i) > 7]
|
||||||
|
def unite_words(entries):
|
||||||
|
entries = to_be_fixed[0]
|
||||||
|
word_entries = next(((entries[:i],entries[i:]) for (i,e) in enumerate(entries) if e in voice_set),'')
|
||||||
|
word_entries[1]
|
||||||
|
return
|
||||||
|
to_be_fixed[0]
|
||||||
|
entries = [unite_words for e in to_be_fixed]
|
||||||
|
[i for i in entries if len(i) % 2 != 0]
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# sunflower_pairs_data()
|
# sunflower_pairs_data()
|
||||||
|
|
|
||||||
|
|
@ -3,6 +3,7 @@ from AppKit import NSSpeechSynthesizer, NSSpeechInputModeProperty
|
||||||
from AppKit import NSSpeechModePhoneme
|
from AppKit import NSSpeechModePhoneme
|
||||||
from Foundation import NSURL
|
from Foundation import NSURL
|
||||||
import json
|
import json
|
||||||
|
import csv
|
||||||
import random
|
import random
|
||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
|
|
@ -81,6 +82,11 @@ class SynthFile(object):
|
||||||
|
|
||||||
return ','.join([str(c) for c in cols])+'\n'
|
return ','.join([str(c) for c in cols])+'\n'
|
||||||
|
|
||||||
|
def get_values(self):
|
||||||
|
cols = [self.word, self.phoneme, self.voice,
|
||||||
|
self.voice_lang, self.rate, self.variant,
|
||||||
|
self.filename]
|
||||||
|
return [str(c) for c in cols]
|
||||||
|
|
||||||
class SynthVariant(object):
|
class SynthVariant(object):
|
||||||
"""docstring for SynthVariant."""
|
"""docstring for SynthVariant."""
|
||||||
|
|
@ -191,22 +197,11 @@ def synth_generator():
|
||||||
print("It took {} to synthsize all variants.".format(time_str))
|
print("It took {} to synthsize all variants.".format(time_str))
|
||||||
return synth_for_words
|
return synth_for_words
|
||||||
|
|
||||||
|
|
||||||
def write_synths(synth_list, fname, csv=False):
|
|
||||||
f = open(fname, 'w')
|
|
||||||
if csv:
|
|
||||||
for s in synth_list:
|
|
||||||
f.write(s.get_csv())
|
|
||||||
else:
|
|
||||||
json.dump([s.get_json() for s in synth_list], f)
|
|
||||||
f.close()
|
|
||||||
|
|
||||||
|
|
||||||
def synth_logger(fname, csv=False):
|
def synth_logger(fname, csv=False):
|
||||||
f = open(fname, 'w')
|
f = open(fname, 'w')
|
||||||
|
s_csv_w = csv.writer(f, quoting=csv.QUOTE_MINIMAL)
|
||||||
def csv_writer(s):
|
def csv_writer(s):
|
||||||
f.write(s.get_csv())
|
s_csv_w.writerow(s.get_values())
|
||||||
synth_list = []
|
synth_list = []
|
||||||
|
|
||||||
def json_writer(s):
|
def json_writer(s):
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue