diff --git a/speech_data.py b/speech_data.py index 9dadb67..83b5d6d 100644 --- a/speech_data.py +++ b/speech_data.py @@ -26,7 +26,7 @@ def siamese_pairs(rightGroup, wrongGroup): random.shuffle(rightRightPairs) # return (random.sample(same,10), random.sample(diff,10)) # return rightRightPairs[:10],rightWrongPairs[:10] - return rightRightPairs[:32],rightWrongPairs[:32] + return rightRightPairs[:16],rightWrongPairs[:16] # return rightRightPairs,rightWrongPairs def create_spectrogram_tfrecords(audio_group='audio'): @@ -42,9 +42,9 @@ def create_spectrogram_tfrecords(audio_group='audio'): audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x) audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists) audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index() - audio_samples['rate_int'] = apply_by_multiprocessing(audio_samples['rate'], str.isdigit) - audio_samples = audio_samples[audio_samples['rate_int'] == True].reset_index().drop(['level_0'],axis=1) - audio_samples['rate'] = audio_samples['rate'].astype(int) + # audio_samples['rate_int'] = apply_by_multiprocessing(audio_samples['rate'], str.isdigit) + # audio_samples = audio_samples[audio_samples['rate_int'] == True].reset_index().drop(['level_0'],axis=1) + # audio_samples['rate'] = audio_samples['rate'].astype(int) def _float_feature(value): return tf.train.Feature(float_list=tf.train.FloatList(value=value)) @@ -131,22 +131,26 @@ def audio_samples_word_count(audio_group='audio'): return len(audio_samples.groupby(audio_samples['word'])) def fix_csv(audio_group='audio'): - audio_group = 'story_all' - audio_samples = pd.read_csv( './outputs/story_words.csv' - , names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file'] - , quoting=csv.QUOTE_NONE) - voice_set = set(audio_samples['voice'].unique().tolist()) audio_csv_lines = open('./outputs/' + audio_group + '.csv','r').readlines() audio_csv_data = [i.strip().split(',') for i in audio_csv_lines] - to_be_fixed = [i for i in audio_csv_data if len(i) > 7] - def unite_words(entries): - entries = to_be_fixed[0] - word_entries = next(((entries[:i],entries[i:]) for (i,e) in enumerate(entries) if e in voice_set),'') - word_entries[1] - return - to_be_fixed[0] - entries = [unite_words for e in to_be_fixed] - [i for i in entries if len(i) % 2 != 0] + # audio_samples = pd.read_csv( './outputs/story_words.csv' + # , names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file'] + # , quoting=csv.QUOTE_NONE) + # voice_set = set(audio_samples['voice'].unique().tolist()) + # to_be_fixed = [i for i in audio_csv_data if len(i) > 7] + # def unite_words(entries): + # entries = to_be_fixed[0] + # word_entries = next(((entries[:i],entries[i:]) for (i,e) in enumerate(entries) if e in voice_set),'') + # word_entries[1] + # return + # to_be_fixed[0] + # entries = [unite_words for e in to_be_fixed] + # [i for i in entries if len(i) % 2 != 0] + proper_rows = [i for i in audio_csv_data if len(i) == 7] + with open('./outputs/' + audio_group + '-new.csv','w') as fixed_csv: + fixed_csv_w = csv.writer(fixed_csv, quoting=csv.QUOTE_MINIMAL) + fixed_csv_w.writerows(proper_rows) + if __name__ == '__main__': # sunflower_pairs_data()