removed tfrecord tensor code and remnants

master
Malar Kannan 2017-11-10 14:15:12 +05:30
parent e9b18921ee
commit 1190312def
1 changed files with 1 additions and 204 deletions

View File

@ -110,67 +110,6 @@ def padd_zeros(spgr, max_samples):
return np.lib.pad(spgr, [(0, max_samples - spgr.shape[0]), (0, 0)], return np.lib.pad(spgr, [(0, max_samples - spgr.shape[0]), (0, 0)],
'constant') 'constant')
def find_max_n(trf):
max_n,n_records = 0,0
max_n_it = tf.python_io.tf_record_iterator(path=trf)
for string_record in max_n_it:
example = tf.train.Example()
example.ParseFromString(string_record)
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
max_n = max([max_n,spec_n1,spec_n2])
n_records+=1
return (max_n,n_records)
def padd_zeros_siamese_tfrecords(audio_group='audio'):
records_file = os.path.join('./outputs',audio_group+'.tfrecords')
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
print('finding max_n...')
max_n,n_records = find_max_n(records_file)
p_spec1 = None
print('reading tfrecords...')
writer = tf.python_io.TFRecordWriter('./outputs/' + audio_group + '_padded.tfrecords')
for string_record in tqdm(record_iterator,desc='padding siamese record',total=n_records):
example = tf.train.Example()
example.ParseFromString(string_record)
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
spec_w2 = example.features.feature['spec_w2'].int64_list.value[0]
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
p_spec1,p_spec2 = padd_zeros(spec1,max_n),padd_zeros(spec2,max_n)
output = example.features.feature['output'].int64_list.value
w_example = tf.train.Example(features=tf.train.Features(
feature={
'spec1':_float_feature(p_spec1.reshape(-1)),
'spec2':_float_feature(p_spec2.reshape(-1)),
'output':_int64_feature(output)
}
))
writer.write(w_example.SerializeToString())
const_file = os.path.join('./outputs',audio_group+'.constants')
pickle.dump((max_n,p_spec1.shape[1],n_records),open(const_file,'wb'))
writer.close()
def pickle_constants(audio_group='audio'):
records_file = os.path.join('./outputs',audio_group+'_padded.tfrecords')
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
print('finding max_n...')
max_n,n_records = find_max_n(records_file)
spec1 = 0
print('finding spec_w1...')
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
spec1 = len(example.features.feature['spec1'].float_list.value)//max_n
print('found spec_w1...')
break
const_file = os.path.join('./outputs',audio_group+'.constants')
print(max_n,spec1,n_records)
pickle.dump((max_n,spec1,n_records),open(const_file,'wb'))
def reservoir_sample(iterable, k): def reservoir_sample(iterable, k):
it = iter(iterable) it = iter(iterable)
if not (k > 0): if not (k > 0):
@ -185,36 +124,6 @@ def reservoir_sample(iterable, k):
sample[j] = item # replace item with gradually decreasing probability sample[j] = item # replace item with gradually decreasing probability
return sample return sample
def read_siamese_tfrecords_oneshot(audio_group='audio',sample_size=3000):
records_file = os.path.join('./outputs',audio_group+'_padded.tfrecords')
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
input_pairs = []
output_class = []
const_file = os.path.join('./outputs',audio_group+'.constants')
(n_spec,n_features,n_records) = pickle.load(open(const_file,'rb'))
print('reading tfrecords({})...'.format(audio_group))
samples = min([sample_size,n_records])
input_data = np.zeros((samples,2,n_spec,n_features))
output_data = np.zeros((samples,2))
random_samples = enumerate(reservoir_sample(record_iterator,samples))
for (i,string_record) in tqdm(random_samples,total=samples):
example = tf.train.Example()
example.ParseFromString(string_record)
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
spec_w2 = example.features.feature['spec_w2'].int64_list.value[0]
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
p_spec1,p_spec2 = padd_zeros(spec1,n_spec),padd_zeros(spec2,n_spec)
input_data[i] = np.asarray([spec1,spec2])
output = example.features.feature['output'].int64_list.value
output_data[i] = np.asarray(output)
# print('converting to nparray...')
# tr_pairs,te_pairs,tr_y,te_y = train_test_split(input_data,output_data,test_size=0.1)
# result = (tr_pairs,te_pairs,tr_y,te_y,n_spec,n_features)
return input_data,output_data
def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,sample_size=100): def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,sample_size=100):
records_file = os.path.join('./outputs',audio_group+'.train.tfrecords') records_file = os.path.join('./outputs',audio_group+'.train.tfrecords')
input_pairs = [] input_pairs = []
@ -273,120 +182,8 @@ def read_siamese_tfrecords_generator(audio_group='audio',batch_size=32,sample_si
return record_generator,input_data,output_data,n_spec,n_features,n_records return record_generator,input_data,output_data,n_spec,n_features,n_records
def read_siamese_tfrecords_generator_old(audio_group='audio',batch_size=32):
records_file = os.path.join('./outputs',audio_group+'_padded.tfrecords')
input_pairs = []
output_class = []
const_file = os.path.join('./outputs',audio_group+'.constants')
(n_spec,n_features,n_records) = pickle.load(open(const_file,'rb'))
print('reading tfrecords({})...'.format(audio_group))
def record_generator():
input_data = []
output_data = []
while True:
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
for (i,string_record) in tqdm(enumerate(record_iterator),total=n_records):
example = tf.train.Example()
example.ParseFromString(string_record)
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(n_spec,n_features)
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(n_spec,n_features)
input_data.append(np.asarray([spec1,spec2]))
output = example.features.feature['output'].int64_list.value
output_data.append(np.asarray(output))
if len(input_data) == batch_size:
input_arr = np.asarray(input_data)
output_arr = np.asarray(output_data)
yield ([input_arr[:, 0], input_arr[:, 1]],output_arr)
input_data = []
output_data = []
return record_generator,n_spec,n_features,n_records
def read_siamese_tfrecords(audio_group='audio'):
audio_group='story_words_test'
record_file = os.path.join('./outputs',audio_group+'_padded.tfrecords')
const_file = os.path.join('./outputs',audio_group+'.constants')
(n_spec,n_features) = pickle.load(open(const_file,'rb'))
filename_queue = tf.train.string_input_producer([record_file])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={
'spec1': tf.FixedLenFeature([1,n_spec,n_features], tf.float32),
'spec2': tf.FixedLenFeature([1,n_spec,n_features], tf.float32),
'output':tf.FixedLenFeature([2], tf.int64)
})
spec1 = features['spec1']
spec1 = tf.cast(spec1, tf.float32) * (1. / 255)
spec2 = features['spec2']
spec2 = tf.cast(spec2, tf.float32) * (1. / 255)
output = tf.cast(features['output'], tf.int32)
return spec1,spec2, output,n_spec,n_features
def read_siamese_tfrecords_batch(audio_group='audio', batch_size=32):
audio_group='story_words_test'
record_file = os.path.join('./outputs',audio_group+'_padded.tfrecords')
""" Return tensor to read from TFRecord """
print('Creating graph for loading {} ...'.format(record_file))
const_file = os.path.join('./outputs',audio_group+'.constants')
(n_spec,n_features) = pickle.load(open(const_file,'rb'))
records_file = os.path.join('./outputs',audio_group+'.tfrecords')
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
n_records = len([i for i in record_iterator])
batch_shape=[batch_size, n_spec, n_features]
with tf.variable_scope("SiameseTFRecords"):
record_input = data_flow_ops.RecordInput(record_file, batch_size=batch_size)
records_op = record_input.get_yield_op()
records_op = tf.split(records_op, batch_shape[0], 0)
records_op = [tf.reshape(record, []) for record in records_op]
specs1, specs2 = [],[]
outputs = []
for i, serialized_example in tqdm(enumerate(records_op)):
with tf.variable_scope("parse_siamese_pairs", reuse=True):
features = tf.parse_single_example(
serialized_example,
features={
'spec1': tf.FixedLenFeature([n_spec,n_features], tf.float32),
'spec2': tf.FixedLenFeature([n_spec,n_features], tf.float32),
'output':tf.FixedLenFeature([2], tf.int64)
})
spec1 = features['spec1']
spec1 = tf.cast(spec1, tf.float32) * (1. / 255)
spec2 = features['spec2']
output = tf.cast(spec2, tf.float32) * (1. / 255)
output = tf.cast(features['output'], tf.float32)
specs1.append(spec1)
specs2.append(spec2)
outputs.append(output)
specs1 = tf.parallel_stack(specs1, 0)
specs2 = tf.parallel_stack(specs2, 0)
outputs = tf.parallel_stack(outputs, 0)
specs1 = tf.cast(specs1, tf.float32)
specs2 = tf.cast(specs2, tf.float32)
specs1 = tf.reshape(specs1, shape=batch_shape)
specs2 = tf.reshape(specs1, shape=batch_shape)
specs1_shape = specs1.get_shape()
specs2_shape = specs2.get_shape()
outputs_shape = outputs.get_shape()
copy_stage = data_flow_ops.StagingArea(
[tf.float32, tf.float32, tf.float32],
shapes=[specs1_shape, specs2_shape, outputs_shape])
copy_stage_op = copy_stage.put(
[specs1, specs2, outputs])
staged_specs1, staged_specs2, staged_outputs = copy_stage.get()
return specs1, spec2, outputs,n_spec,n_features,n_records
def audio_samples_word_count(audio_group='audio'): def audio_samples_word_count(audio_group='audio'):
audio_group = 'story_all' audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv')
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv'
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']
, quoting=csv.QUOTE_NONE)
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists)
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
return len(audio_samples.groupby(audio_samples['word'])) return len(audio_samples.groupby(audio_samples['word']))
def fix_csv(audio_group='audio'): def fix_csv(audio_group='audio'):