implemented random sampling of data for oneshot loading
parent
b3a6aa2f6a
commit
0a4d4fadeb
217
speech_data.py
217
speech_data.py
|
|
@ -3,6 +3,7 @@ from pandas_parallel import apply_by_multiprocessing
|
|||
# import dask as dd
|
||||
# import dask.dataframe as ddf
|
||||
import tensorflow as tf
|
||||
from tensorflow.python.ops import data_flow_ops
|
||||
import numpy as np
|
||||
from spectro_gen import generate_aiff_spectrogram
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
|
@ -11,6 +12,7 @@ import os
|
|||
import random
|
||||
import csv
|
||||
import gc
|
||||
import pickle
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
|
|
@ -23,6 +25,16 @@ def siamese_pairs(rightGroup, wrongGroup):
|
|||
random.shuffle(rightRightPairs)
|
||||
return rightRightPairs[:32],rightWrongPairs[:32]
|
||||
|
||||
|
||||
def _float_feature(value):
|
||||
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
|
||||
|
||||
def _int64_feature(value):
|
||||
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
|
||||
|
||||
def _bytes_feature(value):
|
||||
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
|
||||
|
||||
def create_spectrogram_tfrecords(audio_group='audio'):
|
||||
'''
|
||||
http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/
|
||||
|
|
@ -35,14 +47,7 @@ def create_spectrogram_tfrecords(audio_group='audio'):
|
|||
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists)
|
||||
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
|
||||
|
||||
def _float_feature(value):
|
||||
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
|
||||
|
||||
def _int64_feature(value):
|
||||
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
|
||||
|
||||
def _bytes_feature(value):
|
||||
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
|
||||
n_records = n_spec = n_features = 0
|
||||
|
||||
writer = tf.python_io.TFRecordWriter('./outputs/' + audio_group + '.tfrecords')
|
||||
prog = tqdm(audio_samples.groupby(audio_samples['word']),desc='Computing spectrogram')
|
||||
|
|
@ -64,6 +69,11 @@ def create_spectrogram_tfrecords(audio_group='audio'):
|
|||
spec_n1,spec_n2 = spectro1.shape[0],spectro2.shape[0]
|
||||
spec_w1,spec_w2 = spectro1.shape[1],spectro2.shape[1]
|
||||
spec1,spec2 = spectro1.reshape(-1),spectro2.reshape(-1)
|
||||
|
||||
n_spec = max([n_spec,spec_n1,spec_n2])
|
||||
n_features = spec_w1
|
||||
n_records+=1
|
||||
|
||||
example = tf.train.Example(features=tf.train.Features(
|
||||
feature={
|
||||
'word': _bytes_feature([w.encode('utf-8')]),
|
||||
|
|
@ -91,13 +101,15 @@ def create_spectrogram_tfrecords(audio_group='audio'):
|
|||
group_prog.close()
|
||||
prog.close()
|
||||
writer.close()
|
||||
const_file = os.path.join('./outputs',audio_group+'.constants')
|
||||
pickle.dump((n_spec,n_features,n_records),open(const_file,'wb'))
|
||||
|
||||
def padd_zeros(spgr, max_samples):
|
||||
return np.lib.pad(spgr, [(0, max_samples - spgr.shape[0]), (0, 0)],
|
||||
'constant')
|
||||
|
||||
def find_max_n(trf):
|
||||
max_n = 0
|
||||
max_n,n_records = 0,0
|
||||
max_n_it = tf.python_io.tf_record_iterator(path=trf)
|
||||
for string_record in max_n_it:
|
||||
example = tf.train.Example()
|
||||
|
|
@ -105,19 +117,20 @@ def find_max_n(trf):
|
|||
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
|
||||
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
|
||||
max_n = max([max_n,spec_n1,spec_n2])
|
||||
return max_n
|
||||
n_records+=1
|
||||
return (max_n,n_records)
|
||||
|
||||
def read_siamese_tfrecords(audio_group='audio'):
|
||||
def padd_zeros_siamese_tfrecords(audio_group='audio'):
|
||||
records_file = os.path.join('./outputs',audio_group+'.tfrecords')
|
||||
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
|
||||
input_pairs = []
|
||||
output_class = []
|
||||
max_n = find_max_n(records_file)
|
||||
spec_w1 = 0
|
||||
for string_record in record_iterator:
|
||||
print('finding max_n...')
|
||||
max_n,n_records = find_max_n(records_file)
|
||||
p_spec1 = None
|
||||
print('reading tfrecords...')
|
||||
writer = tf.python_io.TFRecordWriter('./outputs/' + audio_group + '_padded.tfrecords')
|
||||
for string_record in tqdm(record_iterator,desc='padding siamese record',total=n_records):
|
||||
example = tf.train.Example()
|
||||
example.ParseFromString(string_record)
|
||||
example.features.feature['spec2'].float_list.value[0]
|
||||
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
|
||||
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
|
||||
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
|
||||
|
|
@ -125,14 +138,155 @@ def read_siamese_tfrecords(audio_group='audio'):
|
|||
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
|
||||
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
|
||||
p_spec1,p_spec2 = padd_zeros(spec1,max_n),padd_zeros(spec2,max_n)
|
||||
input_pairs.append(np.asarray([p_spec1,p_spec2]))
|
||||
output = example.features.feature['output'].int64_list.value
|
||||
output_class.append(np.asarray(output))
|
||||
n_features = spec_w1
|
||||
input_data,output_data = np.asarray(input_pairs),np.asarray(output_class)
|
||||
tr_pairs,te_pairs,tr_y,te_y = train_test_split(input_data,output_data)
|
||||
n_step,n_features = int(max_n),int(spec_w1)
|
||||
return (tr_pairs,te_pairs,tr_y,te_y,n_step,n_features)
|
||||
w_example = tf.train.Example(features=tf.train.Features(
|
||||
feature={
|
||||
'spec1':_float_feature(p_spec1.reshape(-1)),
|
||||
'spec2':_float_feature(p_spec2.reshape(-1)),
|
||||
'output':_int64_feature(output)
|
||||
}
|
||||
))
|
||||
writer.write(w_example.SerializeToString())
|
||||
const_file = os.path.join('./outputs',audio_group+'.constants')
|
||||
pickle.dump((max_n,p_spec1.shape[1],n_records),open(const_file,'wb'))
|
||||
writer.close()
|
||||
|
||||
def pickle_constants(audio_group='audio'):
|
||||
records_file = os.path.join('./outputs',audio_group+'_padded.tfrecords')
|
||||
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
|
||||
print('finding max_n...')
|
||||
max_n,n_records = find_max_n(records_file)
|
||||
spec1 = 0
|
||||
print('finding spec_w1...')
|
||||
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
|
||||
for string_record in record_iterator:
|
||||
example = tf.train.Example()
|
||||
example.ParseFromString(string_record)
|
||||
spec1 = len(example.features.feature['spec1'].float_list.value)//max_n
|
||||
print('found spec_w1...')
|
||||
break
|
||||
const_file = os.path.join('./outputs',audio_group+'.constants')
|
||||
print(max_n,spec1,n_records)
|
||||
pickle.dump((max_n,spec1,n_records),open(const_file,'wb'))
|
||||
|
||||
def reservoir_sample(iterable, k):
|
||||
it = iter(iterable)
|
||||
if not (k > 0):
|
||||
raise ValueError("sample size must be positive")
|
||||
|
||||
sample = list(itertools.islice(it, k)) # fill the reservoir
|
||||
random.shuffle(sample) # if number of items less then *k* then
|
||||
# return all items in random order.
|
||||
for i, item in enumerate(it, start=k+1):
|
||||
j = random.randrange(i) # random [0..i)
|
||||
if j < k:
|
||||
sample[j] = item # replace item with gradually decreasing probability
|
||||
return sample
|
||||
|
||||
def read_siamese_tfrecords_oneshot(audio_group='audio'):
|
||||
records_file = os.path.join('./outputs',audio_group+'_padded.tfrecords')
|
||||
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
|
||||
input_pairs = []
|
||||
output_class = []
|
||||
const_file = os.path.join('./outputs',audio_group+'.constants')
|
||||
(n_spec,n_features,n_records) = pickle.load(open(const_file,'rb'))
|
||||
print('reading tfrecords...')
|
||||
samples = min([30000,n_records])
|
||||
input_data = np.zeros((samples,2,n_spec,n_features))
|
||||
output_data = np.zeros((samples,2))
|
||||
random_samples = enumerate(reservoir_sample(record_iterator,samples))
|
||||
for (i,string_record) in tqdm(random_samples,total=samples):
|
||||
# if i == samples:
|
||||
# break
|
||||
example = tf.train.Example()
|
||||
example.ParseFromString(string_record)
|
||||
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(n_spec,n_features)
|
||||
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(n_spec,n_features)
|
||||
input_data[i] = np.asarray([spec1,spec2])
|
||||
output = example.features.feature['output'].int64_list.value
|
||||
output_data[i] = np.asarray(output)
|
||||
print('converting to nparray...')
|
||||
tr_pairs,te_pairs,tr_y,te_y = train_test_split(input_data,output_data,test_size=0.1)
|
||||
result = (tr_pairs,te_pairs,tr_y,te_y,n_spec,n_features)
|
||||
return result
|
||||
|
||||
def read_siamese_tfrecords(audio_group='audio'):
|
||||
audio_group='story_words_test'
|
||||
|
||||
record_file = os.path.join('./outputs',audio_group+'_padded.tfrecords')
|
||||
const_file = os.path.join('./outputs',audio_group+'.constants')
|
||||
(n_spec,n_features) = pickle.load(open(const_file,'rb'))
|
||||
|
||||
filename_queue = tf.train.string_input_producer([record_file])
|
||||
reader = tf.TFRecordReader()
|
||||
_, serialized_example = reader.read(filename_queue)
|
||||
features = tf.parse_single_example(serialized_example,
|
||||
features={
|
||||
'spec1': tf.FixedLenFeature([1,n_spec,n_features], tf.float32),
|
||||
'spec2': tf.FixedLenFeature([1,n_spec,n_features], tf.float32),
|
||||
'output':tf.FixedLenFeature([2], tf.int64)
|
||||
})
|
||||
spec1 = features['spec1']
|
||||
spec1 = tf.cast(spec1, tf.float32) * (1. / 255)
|
||||
spec2 = features['spec2']
|
||||
spec2 = tf.cast(spec2, tf.float32) * (1. / 255)
|
||||
output = tf.cast(features['output'], tf.int32)
|
||||
return spec1,spec2, output,n_spec,n_features
|
||||
|
||||
def read_siamese_tfrecords_batch(audio_group='audio', batch_size=32):
|
||||
audio_group='story_words_test'
|
||||
record_file = os.path.join('./outputs',audio_group+'_padded.tfrecords')
|
||||
""" Return tensor to read from TFRecord """
|
||||
print('Creating graph for loading {} ...'.format(record_file))
|
||||
const_file = os.path.join('./outputs',audio_group+'.constants')
|
||||
(n_spec,n_features) = pickle.load(open(const_file,'rb'))
|
||||
records_file = os.path.join('./outputs',audio_group+'.tfrecords')
|
||||
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
|
||||
n_records = len([i for i in record_iterator])
|
||||
batch_shape=[batch_size, n_spec, n_features]
|
||||
with tf.variable_scope("SiameseTFRecords"):
|
||||
record_input = data_flow_ops.RecordInput(record_file, batch_size=batch_size)
|
||||
records_op = record_input.get_yield_op()
|
||||
records_op = tf.split(records_op, batch_shape[0], 0)
|
||||
records_op = [tf.reshape(record, []) for record in records_op]
|
||||
specs1, specs2 = [],[]
|
||||
outputs = []
|
||||
for i, serialized_example in tqdm(enumerate(records_op)):
|
||||
with tf.variable_scope("parse_siamese_pairs", reuse=True):
|
||||
features = tf.parse_single_example(
|
||||
serialized_example,
|
||||
features={
|
||||
'spec1': tf.FixedLenFeature([n_spec,n_features], tf.float32),
|
||||
'spec2': tf.FixedLenFeature([n_spec,n_features], tf.float32),
|
||||
'output':tf.FixedLenFeature([2], tf.int64)
|
||||
})
|
||||
spec1 = features['spec1']
|
||||
spec1 = tf.cast(spec1, tf.float32) * (1. / 255)
|
||||
spec2 = features['spec2']
|
||||
output = tf.cast(spec2, tf.float32) * (1. / 255)
|
||||
output = tf.cast(features['output'], tf.float32)
|
||||
specs1.append(spec1)
|
||||
specs2.append(spec2)
|
||||
outputs.append(output)
|
||||
|
||||
specs1 = tf.parallel_stack(specs1, 0)
|
||||
specs2 = tf.parallel_stack(specs2, 0)
|
||||
outputs = tf.parallel_stack(outputs, 0)
|
||||
specs1 = tf.cast(specs1, tf.float32)
|
||||
specs2 = tf.cast(specs2, tf.float32)
|
||||
|
||||
specs1 = tf.reshape(specs1, shape=batch_shape)
|
||||
specs2 = tf.reshape(specs1, shape=batch_shape)
|
||||
specs1_shape = specs1.get_shape()
|
||||
specs2_shape = specs2.get_shape()
|
||||
outputs_shape = outputs.get_shape()
|
||||
copy_stage = data_flow_ops.StagingArea(
|
||||
[tf.float32, tf.float32, tf.float32],
|
||||
shapes=[specs1_shape, specs2_shape, outputs_shape])
|
||||
copy_stage_op = copy_stage.put(
|
||||
[specs1, specs2, outputs])
|
||||
staged_specs1, staged_specs2, staged_outputs = copy_stage.get()
|
||||
return specs1, spec2, outputs,n_spec,n_features,n_records
|
||||
|
||||
def audio_samples_word_count(audio_group='audio'):
|
||||
audio_group = 'story_all'
|
||||
|
|
@ -152,14 +306,27 @@ def fix_csv(audio_group='audio'):
|
|||
fixed_csv_w = csv.writer(fixed_csv, quoting=csv.QUOTE_MINIMAL)
|
||||
fixed_csv_w.writerows(proper_rows)
|
||||
|
||||
def convert_old_audio():
|
||||
audio_samples = pd.read_csv( './outputs/audio.csv.old'
|
||||
, names=['word', 'voice', 'rate', 'variant', 'file'])
|
||||
audio_samples['phonemes'] = 'unknown'
|
||||
audio_samples['language'] = 'en-US'
|
||||
audio_samples.loc[audio_samples['variant'] == 'normal','variant'] = 'low'
|
||||
audio_samples.loc[audio_samples['variant'] == 'phoneme','variant'] = 'medium'
|
||||
audio_samples = audio_samples[['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']]
|
||||
audio_samples.to_csv('./outputs/audio_new.csv',index=False,header=False)
|
||||
|
||||
if __name__ == '__main__':
|
||||
# sunflower_pairs_data()
|
||||
# create_spectrogram_data()
|
||||
# create_spectrogram_data('story_words')
|
||||
create_spectrogram_tfrecords('story_words')
|
||||
# create_spectrogram_tfrecords('story_words')
|
||||
# create_spectrogram_tfrecords('story_words_test')
|
||||
# read_siamese_tfrecords('story_all')
|
||||
# read_siamese_tfrecords('story_words_test')
|
||||
pickle_constants('story_words_test')
|
||||
# create_spectrogram_tfrecords('audio')
|
||||
# padd_zeros_siamese_tfrecords('audio')
|
||||
# create_padded_spectrogram()
|
||||
# create_speech_pairs_data()
|
||||
# print(speech_model_data())
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@ from __future__ import absolute_import
|
|||
from __future__ import print_function
|
||||
import numpy as np
|
||||
# from speech_data import speech_model_data
|
||||
from speech_data import read_siamese_tfrecords
|
||||
from speech_data import read_siamese_tfrecords_oneshot
|
||||
from keras.models import Model,load_model
|
||||
from keras.layers import Input, Dense, Dropout, LSTM, Lambda, Concatenate
|
||||
from keras.losses import categorical_crossentropy
|
||||
|
|
@ -82,7 +82,7 @@ def siamese_model(input_dim):
|
|||
def train_siamese():
|
||||
# the data, shuffled and split between train and test sets
|
||||
# tr_pairs, te_pairs, tr_y_e, te_y_e = speech_model_data()
|
||||
(tr_pairs,te_pairs,tr_y,te_y,n_step,n_features) = read_siamese_tfrecords('story_words_test')
|
||||
(tr_pairs,te_pairs,tr_y,te_y,n_step,n_features) = read_siamese_tfrecords_oneshot()
|
||||
# tr_y = to_categorical(tr_y_e, num_classes=2)
|
||||
# te_y = to_categorical(te_y_e, num_classes=2)
|
||||
input_dim = (n_step, n_features)
|
||||
|
|
|
|||
Loading…
Reference in New Issue