implemented random sampling of data for oneshot loading

master
Malar Kannan 2017-11-09 15:00:17 +05:30
parent b3a6aa2f6a
commit 0a4d4fadeb
2 changed files with 194 additions and 27 deletions

View File

@ -3,6 +3,7 @@ from pandas_parallel import apply_by_multiprocessing
# import dask as dd # import dask as dd
# import dask.dataframe as ddf # import dask.dataframe as ddf
import tensorflow as tf import tensorflow as tf
from tensorflow.python.ops import data_flow_ops
import numpy as np import numpy as np
from spectro_gen import generate_aiff_spectrogram from spectro_gen import generate_aiff_spectrogram
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
@ -11,6 +12,7 @@ import os
import random import random
import csv import csv
import gc import gc
import pickle
from tqdm import tqdm from tqdm import tqdm
@ -23,6 +25,16 @@ def siamese_pairs(rightGroup, wrongGroup):
random.shuffle(rightRightPairs) random.shuffle(rightRightPairs)
return rightRightPairs[:32],rightWrongPairs[:32] return rightRightPairs[:32],rightWrongPairs[:32]
def _float_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
def create_spectrogram_tfrecords(audio_group='audio'): def create_spectrogram_tfrecords(audio_group='audio'):
''' '''
http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/ http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/21/tfrecords-guide/
@ -35,14 +47,7 @@ def create_spectrogram_tfrecords(audio_group='audio'):
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists) audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists)
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index() audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
def _float_feature(value): n_records = n_spec = n_features = 0
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
writer = tf.python_io.TFRecordWriter('./outputs/' + audio_group + '.tfrecords') writer = tf.python_io.TFRecordWriter('./outputs/' + audio_group + '.tfrecords')
prog = tqdm(audio_samples.groupby(audio_samples['word']),desc='Computing spectrogram') prog = tqdm(audio_samples.groupby(audio_samples['word']),desc='Computing spectrogram')
@ -64,6 +69,11 @@ def create_spectrogram_tfrecords(audio_group='audio'):
spec_n1,spec_n2 = spectro1.shape[0],spectro2.shape[0] spec_n1,spec_n2 = spectro1.shape[0],spectro2.shape[0]
spec_w1,spec_w2 = spectro1.shape[1],spectro2.shape[1] spec_w1,spec_w2 = spectro1.shape[1],spectro2.shape[1]
spec1,spec2 = spectro1.reshape(-1),spectro2.reshape(-1) spec1,spec2 = spectro1.reshape(-1),spectro2.reshape(-1)
n_spec = max([n_spec,spec_n1,spec_n2])
n_features = spec_w1
n_records+=1
example = tf.train.Example(features=tf.train.Features( example = tf.train.Example(features=tf.train.Features(
feature={ feature={
'word': _bytes_feature([w.encode('utf-8')]), 'word': _bytes_feature([w.encode('utf-8')]),
@ -91,13 +101,15 @@ def create_spectrogram_tfrecords(audio_group='audio'):
group_prog.close() group_prog.close()
prog.close() prog.close()
writer.close() writer.close()
const_file = os.path.join('./outputs',audio_group+'.constants')
pickle.dump((n_spec,n_features,n_records),open(const_file,'wb'))
def padd_zeros(spgr, max_samples): def padd_zeros(spgr, max_samples):
return np.lib.pad(spgr, [(0, max_samples - spgr.shape[0]), (0, 0)], return np.lib.pad(spgr, [(0, max_samples - spgr.shape[0]), (0, 0)],
'constant') 'constant')
def find_max_n(trf): def find_max_n(trf):
max_n = 0 max_n,n_records = 0,0
max_n_it = tf.python_io.tf_record_iterator(path=trf) max_n_it = tf.python_io.tf_record_iterator(path=trf)
for string_record in max_n_it: for string_record in max_n_it:
example = tf.train.Example() example = tf.train.Example()
@ -105,19 +117,20 @@ def find_max_n(trf):
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0] spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0] spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
max_n = max([max_n,spec_n1,spec_n2]) max_n = max([max_n,spec_n1,spec_n2])
return max_n n_records+=1
return (max_n,n_records)
def read_siamese_tfrecords(audio_group='audio'): def padd_zeros_siamese_tfrecords(audio_group='audio'):
records_file = os.path.join('./outputs',audio_group+'.tfrecords') records_file = os.path.join('./outputs',audio_group+'.tfrecords')
record_iterator = tf.python_io.tf_record_iterator(path=records_file) record_iterator = tf.python_io.tf_record_iterator(path=records_file)
input_pairs = [] print('finding max_n...')
output_class = [] max_n,n_records = find_max_n(records_file)
max_n = find_max_n(records_file) p_spec1 = None
spec_w1 = 0 print('reading tfrecords...')
for string_record in record_iterator: writer = tf.python_io.TFRecordWriter('./outputs/' + audio_group + '_padded.tfrecords')
for string_record in tqdm(record_iterator,desc='padding siamese record',total=n_records):
example = tf.train.Example() example = tf.train.Example()
example.ParseFromString(string_record) example.ParseFromString(string_record)
example.features.feature['spec2'].float_list.value[0]
spec_n1 = example.features.feature['spec_n1'].int64_list.value[0] spec_n1 = example.features.feature['spec_n1'].int64_list.value[0]
spec_n2 = example.features.feature['spec_n2'].int64_list.value[0] spec_n2 = example.features.feature['spec_n2'].int64_list.value[0]
spec_w1 = example.features.feature['spec_w1'].int64_list.value[0] spec_w1 = example.features.feature['spec_w1'].int64_list.value[0]
@ -125,14 +138,155 @@ def read_siamese_tfrecords(audio_group='audio'):
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1) spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(spec_n1,spec_w1)
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2) spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(spec_n2,spec_w2)
p_spec1,p_spec2 = padd_zeros(spec1,max_n),padd_zeros(spec2,max_n) p_spec1,p_spec2 = padd_zeros(spec1,max_n),padd_zeros(spec2,max_n)
input_pairs.append(np.asarray([p_spec1,p_spec2]))
output = example.features.feature['output'].int64_list.value output = example.features.feature['output'].int64_list.value
output_class.append(np.asarray(output)) w_example = tf.train.Example(features=tf.train.Features(
n_features = spec_w1 feature={
input_data,output_data = np.asarray(input_pairs),np.asarray(output_class) 'spec1':_float_feature(p_spec1.reshape(-1)),
tr_pairs,te_pairs,tr_y,te_y = train_test_split(input_data,output_data) 'spec2':_float_feature(p_spec2.reshape(-1)),
n_step,n_features = int(max_n),int(spec_w1) 'output':_int64_feature(output)
return (tr_pairs,te_pairs,tr_y,te_y,n_step,n_features) }
))
writer.write(w_example.SerializeToString())
const_file = os.path.join('./outputs',audio_group+'.constants')
pickle.dump((max_n,p_spec1.shape[1],n_records),open(const_file,'wb'))
writer.close()
def pickle_constants(audio_group='audio'):
records_file = os.path.join('./outputs',audio_group+'_padded.tfrecords')
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
print('finding max_n...')
max_n,n_records = find_max_n(records_file)
spec1 = 0
print('finding spec_w1...')
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
spec1 = len(example.features.feature['spec1'].float_list.value)//max_n
print('found spec_w1...')
break
const_file = os.path.join('./outputs',audio_group+'.constants')
print(max_n,spec1,n_records)
pickle.dump((max_n,spec1,n_records),open(const_file,'wb'))
def reservoir_sample(iterable, k):
it = iter(iterable)
if not (k > 0):
raise ValueError("sample size must be positive")
sample = list(itertools.islice(it, k)) # fill the reservoir
random.shuffle(sample) # if number of items less then *k* then
# return all items in random order.
for i, item in enumerate(it, start=k+1):
j = random.randrange(i) # random [0..i)
if j < k:
sample[j] = item # replace item with gradually decreasing probability
return sample
def read_siamese_tfrecords_oneshot(audio_group='audio'):
records_file = os.path.join('./outputs',audio_group+'_padded.tfrecords')
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
input_pairs = []
output_class = []
const_file = os.path.join('./outputs',audio_group+'.constants')
(n_spec,n_features,n_records) = pickle.load(open(const_file,'rb'))
print('reading tfrecords...')
samples = min([30000,n_records])
input_data = np.zeros((samples,2,n_spec,n_features))
output_data = np.zeros((samples,2))
random_samples = enumerate(reservoir_sample(record_iterator,samples))
for (i,string_record) in tqdm(random_samples,total=samples):
# if i == samples:
# break
example = tf.train.Example()
example.ParseFromString(string_record)
spec1 = np.array(example.features.feature['spec1'].float_list.value).reshape(n_spec,n_features)
spec2 = np.array(example.features.feature['spec2'].float_list.value).reshape(n_spec,n_features)
input_data[i] = np.asarray([spec1,spec2])
output = example.features.feature['output'].int64_list.value
output_data[i] = np.asarray(output)
print('converting to nparray...')
tr_pairs,te_pairs,tr_y,te_y = train_test_split(input_data,output_data,test_size=0.1)
result = (tr_pairs,te_pairs,tr_y,te_y,n_spec,n_features)
return result
def read_siamese_tfrecords(audio_group='audio'):
audio_group='story_words_test'
record_file = os.path.join('./outputs',audio_group+'_padded.tfrecords')
const_file = os.path.join('./outputs',audio_group+'.constants')
(n_spec,n_features) = pickle.load(open(const_file,'rb'))
filename_queue = tf.train.string_input_producer([record_file])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={
'spec1': tf.FixedLenFeature([1,n_spec,n_features], tf.float32),
'spec2': tf.FixedLenFeature([1,n_spec,n_features], tf.float32),
'output':tf.FixedLenFeature([2], tf.int64)
})
spec1 = features['spec1']
spec1 = tf.cast(spec1, tf.float32) * (1. / 255)
spec2 = features['spec2']
spec2 = tf.cast(spec2, tf.float32) * (1. / 255)
output = tf.cast(features['output'], tf.int32)
return spec1,spec2, output,n_spec,n_features
def read_siamese_tfrecords_batch(audio_group='audio', batch_size=32):
audio_group='story_words_test'
record_file = os.path.join('./outputs',audio_group+'_padded.tfrecords')
""" Return tensor to read from TFRecord """
print('Creating graph for loading {} ...'.format(record_file))
const_file = os.path.join('./outputs',audio_group+'.constants')
(n_spec,n_features) = pickle.load(open(const_file,'rb'))
records_file = os.path.join('./outputs',audio_group+'.tfrecords')
record_iterator = tf.python_io.tf_record_iterator(path=records_file)
n_records = len([i for i in record_iterator])
batch_shape=[batch_size, n_spec, n_features]
with tf.variable_scope("SiameseTFRecords"):
record_input = data_flow_ops.RecordInput(record_file, batch_size=batch_size)
records_op = record_input.get_yield_op()
records_op = tf.split(records_op, batch_shape[0], 0)
records_op = [tf.reshape(record, []) for record in records_op]
specs1, specs2 = [],[]
outputs = []
for i, serialized_example in tqdm(enumerate(records_op)):
with tf.variable_scope("parse_siamese_pairs", reuse=True):
features = tf.parse_single_example(
serialized_example,
features={
'spec1': tf.FixedLenFeature([n_spec,n_features], tf.float32),
'spec2': tf.FixedLenFeature([n_spec,n_features], tf.float32),
'output':tf.FixedLenFeature([2], tf.int64)
})
spec1 = features['spec1']
spec1 = tf.cast(spec1, tf.float32) * (1. / 255)
spec2 = features['spec2']
output = tf.cast(spec2, tf.float32) * (1. / 255)
output = tf.cast(features['output'], tf.float32)
specs1.append(spec1)
specs2.append(spec2)
outputs.append(output)
specs1 = tf.parallel_stack(specs1, 0)
specs2 = tf.parallel_stack(specs2, 0)
outputs = tf.parallel_stack(outputs, 0)
specs1 = tf.cast(specs1, tf.float32)
specs2 = tf.cast(specs2, tf.float32)
specs1 = tf.reshape(specs1, shape=batch_shape)
specs2 = tf.reshape(specs1, shape=batch_shape)
specs1_shape = specs1.get_shape()
specs2_shape = specs2.get_shape()
outputs_shape = outputs.get_shape()
copy_stage = data_flow_ops.StagingArea(
[tf.float32, tf.float32, tf.float32],
shapes=[specs1_shape, specs2_shape, outputs_shape])
copy_stage_op = copy_stage.put(
[specs1, specs2, outputs])
staged_specs1, staged_specs2, staged_outputs = copy_stage.get()
return specs1, spec2, outputs,n_spec,n_features,n_records
def audio_samples_word_count(audio_group='audio'): def audio_samples_word_count(audio_group='audio'):
audio_group = 'story_all' audio_group = 'story_all'
@ -152,14 +306,27 @@ def fix_csv(audio_group='audio'):
fixed_csv_w = csv.writer(fixed_csv, quoting=csv.QUOTE_MINIMAL) fixed_csv_w = csv.writer(fixed_csv, quoting=csv.QUOTE_MINIMAL)
fixed_csv_w.writerows(proper_rows) fixed_csv_w.writerows(proper_rows)
def convert_old_audio():
audio_samples = pd.read_csv( './outputs/audio.csv.old'
, names=['word', 'voice', 'rate', 'variant', 'file'])
audio_samples['phonemes'] = 'unknown'
audio_samples['language'] = 'en-US'
audio_samples.loc[audio_samples['variant'] == 'normal','variant'] = 'low'
audio_samples.loc[audio_samples['variant'] == 'phoneme','variant'] = 'medium'
audio_samples = audio_samples[['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']]
audio_samples.to_csv('./outputs/audio_new.csv',index=False,header=False)
if __name__ == '__main__': if __name__ == '__main__':
# sunflower_pairs_data() # sunflower_pairs_data()
# create_spectrogram_data() # create_spectrogram_data()
# create_spectrogram_data('story_words') # create_spectrogram_data('story_words')
create_spectrogram_tfrecords('story_words') # create_spectrogram_tfrecords('story_words')
# create_spectrogram_tfrecords('story_words_test') # create_spectrogram_tfrecords('story_words_test')
# read_siamese_tfrecords('story_all') # read_siamese_tfrecords('story_all')
# read_siamese_tfrecords('story_words_test')
pickle_constants('story_words_test')
# create_spectrogram_tfrecords('audio')
# padd_zeros_siamese_tfrecords('audio')
# create_padded_spectrogram() # create_padded_spectrogram()
# create_speech_pairs_data() # create_speech_pairs_data()
# print(speech_model_data()) # print(speech_model_data())

View File

@ -2,7 +2,7 @@ from __future__ import absolute_import
from __future__ import print_function from __future__ import print_function
import numpy as np import numpy as np
# from speech_data import speech_model_data # from speech_data import speech_model_data
from speech_data import read_siamese_tfrecords from speech_data import read_siamese_tfrecords_oneshot
from keras.models import Model,load_model from keras.models import Model,load_model
from keras.layers import Input, Dense, Dropout, LSTM, Lambda, Concatenate from keras.layers import Input, Dense, Dropout, LSTM, Lambda, Concatenate
from keras.losses import categorical_crossentropy from keras.losses import categorical_crossentropy
@ -82,7 +82,7 @@ def siamese_model(input_dim):
def train_siamese(): def train_siamese():
# the data, shuffled and split between train and test sets # the data, shuffled and split between train and test sets
# tr_pairs, te_pairs, tr_y_e, te_y_e = speech_model_data() # tr_pairs, te_pairs, tr_y_e, te_y_e = speech_model_data()
(tr_pairs,te_pairs,tr_y,te_y,n_step,n_features) = read_siamese_tfrecords('story_words_test') (tr_pairs,te_pairs,tr_y,te_y,n_step,n_features) = read_siamese_tfrecords_oneshot()
# tr_y = to_categorical(tr_y_e, num_classes=2) # tr_y = to_categorical(tr_y_e, num_classes=2)
# te_y = to_categorical(te_y_e, num_classes=2) # te_y = to_categorical(te_y_e, num_classes=2)
input_dim = (n_step, n_features) input_dim = (n_step, n_features)