implemented siamese pair tfrecord writer
parent
c187fbe1ca
commit
046343680e
|
|
@ -23,6 +23,15 @@ def get_siamese_pairs(groupF1, groupF2):
|
|||
# return (random.sample(same,10), random.sample(diff,10))
|
||||
return same[:10],diff[:10]
|
||||
|
||||
def siamese_pairs(rightGroup, wrongGroup):
|
||||
group1 = [r for (i, r) in rightGroup.iterrows()]
|
||||
group2 = [r for (i, r) in wrongGroup.iterrows()]
|
||||
rightWrongPairs = [(g1, g2) for g2 in group2 for g1 in group1]
|
||||
rightRightPairs = [i for i in itertools.combinations(group1, 2)]
|
||||
random.shuffle(rightWrongPairs)
|
||||
random.shuffle(rightRightPairs)
|
||||
# return (random.sample(same,10), random.sample(diff,10))
|
||||
return rightRightPairs[:10],rightWrongPairs[:10]
|
||||
|
||||
def append_zeros(spgr, max_samples):
|
||||
return np.lib.pad(spgr, [(0, max_samples - spgr.shape[0]), (0, 0)],
|
||||
|
|
@ -92,7 +101,6 @@ def create_spectrogram_data(audio_group='audio'):
|
|||
audio_samples.to_pickle('outputs/{}-spectrogram.pkl'.format(audio_group))
|
||||
|
||||
def create_spectrogram_tfrecords(audio_group='audio'):
|
||||
# audio_group = 'story_words'
|
||||
audio_samples = pd.read_csv( './outputs/' + audio_group + '.csv'
|
||||
, names=['word','phonemes', 'voice', 'language', 'rate', 'variant', 'file']
|
||||
, quoting=csv.QUOTE_NONE)
|
||||
|
|
@ -101,9 +109,6 @@ def create_spectrogram_tfrecords(audio_group='audio'):
|
|||
audio_samples['file_path'] = audio_samples.loc[:, 'file'].apply(lambda x: 'outputs/' + audio_group + '/' + x)
|
||||
audio_samples['file_exists'] = apply_by_multiprocessing(audio_samples['file_path'], os.path.exists)
|
||||
audio_samples = audio_samples[audio_samples['file_exists'] == True].reset_index()
|
||||
# audio_samples['spectrogram'] = apply_by_multiprocessing(audio_samples['file_paths'],generate_aiff_spectrogram)#.apply(
|
||||
# audio_samples['window_count'] = audio_samples.loc[:,'spectrogram'].apply(lambda x: x.shape[0])
|
||||
# audio_samples.to_pickle('outputs/{}-spectrogram.pkl'.format(audio_group))
|
||||
|
||||
def _float_feature(value):
|
||||
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
|
||||
|
|
@ -115,24 +120,41 @@ def create_spectrogram_tfrecords(audio_group='audio'):
|
|||
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
|
||||
|
||||
writer = tf.python_io.TFRecordWriter('./outputs/' + audio_group + '.tfrecords')
|
||||
audio_samples = audio_samples[:100]
|
||||
for (i,sample) in audio_samples.iterrows():
|
||||
spectrogram = generate_aiff_spectrogram(sample['file_path'])
|
||||
spec_n = spectrogram.shape[0]
|
||||
spec_w = spectrogram.shape[1]
|
||||
spec = spectrogram.reshape(-1)
|
||||
# audio_samples = audio_samples[:100]
|
||||
for (w, word_group) in audio_samples.groupby(audio_samples['word']):
|
||||
g = word_group.reset_index()
|
||||
g['spectrogram'] = apply_by_multiprocessing(g['file_path'],generate_aiff_spectrogram)
|
||||
sample_right = g.loc[audio_samples['variant'] == 'low']
|
||||
sample_wrong = g.loc[audio_samples['variant'] == 'medium']
|
||||
same, diff = siamese_pairs(sample_right, sample_wrong)
|
||||
groups = [([0,1],same),([1,0],diff)]
|
||||
for (output,group) in groups:
|
||||
for sample1,sample2 in group:
|
||||
spectro1,spectro2 = sample1['spectrogram'],sample2['spectrogram']
|
||||
spec_n1,spec_n2 = spectro1.shape[0],spectro2.shape[0]
|
||||
spec_w1,spec_w2 = spectro1.shape[1],spectro2.shape[1]
|
||||
spec1,spec2 = spectro1.reshape(-1),spectro2.reshape(-1)
|
||||
example = tf.train.Example(features=tf.train.Features(
|
||||
feature={
|
||||
'word': _bytes_feature([sample['word'].encode('utf-8')]),
|
||||
'phoneme': _bytes_feature([sample['phonemes'].encode('utf-8')]),
|
||||
'voice': _bytes_feature([sample['voice'].encode('utf-8')]),
|
||||
'language': _bytes_feature([sample['language'].encode('utf-8')]),
|
||||
'rate':_int64_feature([sample['rate']]),
|
||||
'variant': _bytes_feature([sample['variant'].encode('utf-8')]),
|
||||
'file': _bytes_feature([sample['file'].encode('utf-8')]),
|
||||
'spec':_float_feature(spec),
|
||||
'spec_n':_int64_feature([spec_n]),
|
||||
'spec_w':_int64_feature([spec_w])
|
||||
'word': _bytes_feature([w.encode('utf-8')]),
|
||||
'phoneme1': _bytes_feature([sample1['phonemes'].encode('utf-8')]),
|
||||
'phoneme2': _bytes_feature([sample2['phonemes'].encode('utf-8')]),
|
||||
'voice1': _bytes_feature([sample1['voice'].encode('utf-8')]),
|
||||
'voice2': _bytes_feature([sample2['voice'].encode('utf-8')]),
|
||||
'language': _bytes_feature([sample1['language'].encode('utf-8')]),
|
||||
'rate1':_int64_feature([sample1['rate']]),
|
||||
'rate2':_int64_feature([sample2['rate']]),
|
||||
'variant1': _bytes_feature([sample1['variant'].encode('utf-8')]),
|
||||
'variant2': _bytes_feature([sample2['variant'].encode('utf-8')]),
|
||||
'file1': _bytes_feature([sample1['file'].encode('utf-8')]),
|
||||
'file2': _bytes_feature([sample2['file'].encode('utf-8')]),
|
||||
'spec1':_float_feature(spec1),
|
||||
'spec2':_float_feature(spec2),
|
||||
'spec_n1':_int64_feature([spec_n1]),
|
||||
'spec_w1':_int64_feature([spec_w1]),
|
||||
'spec_n2':_int64_feature([spec_n2]),
|
||||
'spec_w2':_int64_feature([spec_w2]),
|
||||
'output':_int64_feature(output)
|
||||
}
|
||||
))
|
||||
writer.write(example.SerializeToString())
|
||||
|
|
|
|||
Loading…
Reference in New Issue