speech-scoring/Siamese.ipynb

447 lines
88 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAC7CAYAAAB1qmWGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAEYJJREFUeJzt3XuQ1fV5x/HPw7KwKAgoihvEQgze\nEzHuoFXTghqrTuKljlYbHYxk0KBTNGkStBpjJipN1ZjUxIqVQhqrpPFujC2DF3Q04EKRqwJVrEsQ\nVDRQVFh2n/6xh87q97twds/vXH5f3q8ZZ895zvec3/M7++zDz9/ta+4uAED+9ap2AgCAbNDQASAR\nNHQASAQNHQASQUMHgETQ0AEgETR0AEgEDR0AElFSQzez08zsNTNbbWZTskoKqDZqG3lkPb1S1Mzq\nJK2U9GVJLZJelnShuy/PLj2g8qht5FXvEt47RtJqd39dkszsAUlnSeqy6PtYX2/QniUsEujax9qi\nbb7VMvgoahs1pdjaLqWhD5P0VqfnLZKO3dkbGrSnjrWTS1gk0LV5Pierj6K2UVOKre1SGnpRzGyi\npImS1KA9yr04oGKobdSaUg6KrpU0vNPzAwqxT3D3ae7e5O5N9epbwuKAiqG2kUulNPSXJY0ys5Fm\n1kfSBZIeyyYtoKqobeRSj3e5uPt2M7tS0n9IqpM03d2XZZYZUCXUNvKqpH3o7v6kpCczygWoGdQ2\n8ogrRQEgETR0AEgEDR0AEkFDB4BE0NABIBE0dABIBA0dABJBQweARNDQASARNHQASAQNHQASQUMH\ngETQ0AEgETR0AEhE2aegQ6hu0MAg9tqdnw1ir4775+j7r9twTBBb8rWDo2Pblq/sZnbArn381THR\neL/fLQxi3nR4EHvjzPiE2l86aUkQe/7pzxedV+NLbdF4w+Pzi/6MPGMLHQASQUMHgETQ0AEgETR0\nAEhESQdFzWyNpM2S2iRtd/emLJJKXfvIA4LYkrF3B7FWj7//R/stCGJHnXN8dOxwDor2yO5Y23VD\n9onG22b1C2IPjLo9OnZ9W30QG9jr2SB2YO89ik9s/Nyih2646MNo/A8/6xPELrt5cnTsPve8VPTy\nak0WZ7mMc/d3M/gcoNZQ28gVdrkAQCJKbegu6T/NbIGZTcwiIaBGUNvInVJ3uZzo7mvNbD9Js83s\nVXf/xA6vwh/DRElqUDf2mwHVRW0jd0raQnf3tYWfGyQ9LCm4fMzdp7l7k7s31atvKYsDKobaRh71\neAvdzPaU1MvdNxcenyrph5llloDew8OzWSRp5LTVFc4E3bG71vbKnx4Yjb926L2RaPz/SParC2O/\n+CC8LcXCzfFltWwZ1GV+n1Zn7UHst4c8XnRes677h+jYy1dcGcR6vbCo6LyqqZRdLkMlPWxmOz7n\n39z9qUyyAqqL2kYu9bihu/vrko7KMBegJlDbyCtOWwSARNDQASAR3A89I//z/fDS+2NOWx4d++PG\n5zNffv/j34nG37o+zGvI4u3Rsf0e3T3uGQ3J/zTcozTr+PD2Ex3CNvHUR/GDolO/Mz6IDVgWudj2\nnY3R9/d6/60ucgh5r/BI58G3TYqOXX7+Pwaxg+r7R8d+dN2mIDbwkqHRsdvfXr+zFCuOLXQASAQN\nHQASQUMHgETQ0AEgETR0AEgEZ7lkZPFl4VH0Vo/PQF4Ozx51X/yFyOUxD29pjA6dvvnsINb76XAy\nDeRf68BwwofRfeLtoF3hTCvf+ZdLo2OHP/xiECvbX0F7+Mmfu/r30aGH9Qkv51981k+jY5/7/G+C\n2AmnxM+eGfgrznIBAJQBDR0AEkFDB4BE0NABIBEcFO2m+mfjBxTrLXLD5TL5r23hfaDXtO4bHXvO\nnuEl1uf33xAde/6/TgtiXxl2TDezQx60NVjRY7/w4iVB7MCbwoOftWzUFfOC2BOnxP+Wz+v/XhD7\n4Mwt0bEDf1VaXlljCx0AEkFDB4BE0NABIBE0dABIxC4buplNN7MNZra0U2xvM5ttZqsKPweXN00g\ne9Q2UlPMWS4zJN0p6ZedYlMkzXH3qWY2pfD8e9mnV10fnT0miH298d+jY2OX+Zd66f+Rcy6Pxved\n0zeI9f1jfFnXjA3/zV5y3s+KzqHlmnCCDEk64JZ8neXQhRnaTWv7kGuWFT22bsGAMmZSPX/3cnir\nC0k6b9y9QeyKI+ZGxz6h2vr3fpdb6O4+V9Knz307S9LMwuOZkuLfDFDDqG2kpqf70Ie6+7rC47cl\nxednAvKH2kZulXxQ1N1dityOrcDMJppZs5k1t2prqYsDKobaRt70tKGvN7NGSSr8jF96KMndp7l7\nk7s31Svc9wvUGGobudXTS/8fkzRe0tTCz0czy6gK6o44JBr/0e3hpfBNfbZ19SlFLy92P/Lrnjk3\niB323Vej72/bFM5K3pVDVh0cxOaf2RAdO6bvx0Hsd9/8cXTsqQ3fDWIjbo7fO9235mrrNana7vWF\nQ6PxsYNmB7GVreHvX5KGLG7NNKdaMfi5+N+BxlU2jywVc9ri/ZJeknSImbWY2QR1FPuXzWyVpFMK\nz4FcobaRml1uobv7hV28dHLGuQAVRW0jNVwpCgCJoKEDQCJo6ACQCCa4kNTexWznXZ/RUpxL3zwt\nGt/8V/2C2MEt84NYFrOlty1fGcQmzYjfUqD5sjuCWGNdmKskLZwQjj33ofHRsf7Kip2liDJaNX5Q\nNH5B/3eC2ImLL46O3evJlzPNCeXDFjoAJIKGDgCJoKEDQCJo6ACQCA6KZuTa9U1BbNM39omObWtZ\nVe50dmrEg+9G49effVwQm7o/B8Ty7OrTfxuNxy7z7/PzeL1K/51hRignttABIBE0dABIBA0dABJB\nQweARHBQdCfqrfh7nC/+Ymxim+oe/OySWTTcu1d7EOvOd/CHG+Px/ZmVs+bc/d6fBbGGJ8KrlZEv\nbKEDQCJo6ACQCBo6ACSChg4AiShmTtHpZrbBzJZ2iv3AzNaa2aLCf2eUN00ge9Q2UlPMWS4zJN0p\n6Zefiv/E3W/NPKMqeO2be0TjrZ7FHclrz5q/jF/i/Zt9w7McWj1+lkvsu/nMDfHlhefO1IwZSqi2\n6wYNDGIDerVUIRNUyy630N19rqSNFcgFqChqG6kpZR/6lWa2uPC/rYMzywioPmobudTThn6XpIMk\njZa0TtJtXQ00s4lm1mxmza3a2sPFARVDbSO3etTQ3X29u7e5e7ukeySN2cnYae7e5O5N9erb0zyB\niqC2kWc9uvTfzBrdfV3h6TmSlu5sfK277kuPVzuFkvUefkA0vvmYzwSxf/r6L0pe3vytDUHMtm0v\n+XOrLc+13TLhiCD2tQHPRMcu3DKizNnUvq1n/LHosR+29yljJtnZZUM3s/sljZU0xMxaJN0gaayZ\njZbkktZIuqyMOQJlQW0jNbts6O5+YSR8bxlyASqK2kZquFIUABJBQweARNDQASARTHCRiOU37h+N\nLzv1zpI+98H/HRKN3/W35wWxhhVMkIDatP2kY4LYA0d39bcRnoL68N+fHB05UL8vJa3MsYUOAImg\noQNAImjoAJAIGjoAJIKDojlU/2xjELul8cGyLGvG2uOj8YbHOQCK2hM7+ClJGydvCWKH1sfvvzNp\n7QlBbNCshdGx3o3cKoEtdABIBA0dABJBQweARNDQASARNHQASARnuUiqs/i89PUWn/E+ZtNfH1f0\n2Bt/GN6hdVy/j4t+fyyvVm/rYnTx6xDjJ60t6f2onL3WhDWwZvuHVcikMqx32L4+uHpzdGzzFx8I\nYrM/6hcdu/L6cKKQPq3N3cyuOthCB4BE0NABIBE0dABIxC4bupkNN7NnzGy5mS0zs8mF+N5mNtvM\nVhV+Di5/ukB2qG2kxtx3fvGqmTVKanT3hWY2QNICSWdLukTSRnefamZTJA129+/t7LP2sr39WIvf\nV7ia3rwxfnn7wgl3FP0
"text/plain": [
"<matplotlib.figure.Figure at 0x7f3fcdaefb38>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"'''Train a Siamese MLP on pairs of digits from the MNIST dataset.\n",
"\n",
"It follows Hadsell-et-al.'06 [1] by computing the Euclidean distance on the\n",
"output of the shared network and by optimizing the contrastive loss (see paper\n",
"for mode details).\n",
"\n",
"[1] \"Dimensionality Reduction by Learning an Invariant Mapping\"\n",
" http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf\n",
"\n",
"Gets to 97.2% test accuracy after 20 epochs.\n",
"2 seconds per epoch on a Titan X Maxwell GPU\n",
"'''\n",
"from __future__ import absolute_import\n",
"from __future__ import print_function\n",
"import numpy as np\n",
"\n",
"import random\n",
"from keras.datasets import mnist\n",
"from keras.models import Model\n",
"from keras.layers import Dense, Dropout, Input, Lambda\n",
"from keras.optimizers import RMSprop\n",
"from keras import backend as K\n",
"\n",
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"\n",
"num_classes = 10\n",
"\n",
"\n",
"def euclidean_distance(vects):\n",
" x, y = vects\n",
" return K.sqrt(K.maximum(K.sum(K.square(x - y), axis=1, keepdims=True), K.epsilon()))\n",
"\n",
"\n",
"def eucl_dist_output_shape(shapes):\n",
" shape1, shape2 = shapes\n",
" return (shape1[0], 1)\n",
"\n",
"\n",
"def contrastive_loss(y_true, y_pred):\n",
" '''Contrastive loss from Hadsell-et-al.'06\n",
" http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf\n",
" '''\n",
" margin = 1\n",
" return K.mean(y_true * K.square(y_pred) +\n",
" (1 - y_true) * K.square(K.maximum(margin - y_pred, 0)))\n",
"\n",
"\n",
"def create_pairs(x, digit_indices):\n",
" '''Positive and negative pair creation.\n",
" Alternates between positive and negative pairs.\n",
" '''\n",
" pairs = []\n",
" labels = []\n",
" n = min([len(digit_indices[d]) for d in range(num_classes)]) - 1\n",
" for d in range(num_classes):\n",
" for i in range(n):\n",
" z1, z2 = digit_indices[d][i], digit_indices[d][i + 1]\n",
" pairs += [[x[z1], x[z2]]]\n",
" inc = random.randrange(1, num_classes)\n",
" dn = (d + inc) % num_classes\n",
" z1, z2 = digit_indices[d][i], digit_indices[dn][i]\n",
" pairs += [[x[z1], x[z2]]]\n",
" labels += [1, 0]\n",
" return np.array(pairs), np.array(labels)\n",
"\n",
"\n",
"def create_base_network(input_dim):\n",
" '''Base network to be shared (eq. to feature extraction).\n",
" '''\n",
" input = Input(shape=(input_dim,))\n",
" x = Dense(128, activation='relu')(input)\n",
" x = Dropout(0.1)(x)\n",
" x = Dense(128, activation='relu')(x)\n",
" x = Dropout(0.1)(x)\n",
" x = Dense(128, activation='relu')(x)\n",
" return Model(input, x)\n",
"\n",
"\n",
"def compute_accuracy(y_true, y_pred):\n",
" '''Compute classification accuracy with a fixed threshold on distances.\n",
" '''\n",
" pred = y_pred.ravel() < 0.5\n",
" return np.mean(pred == y_true)\n",
"\n",
"\n",
"def accuracy(y_true, y_pred):\n",
" '''Compute classification accuracy with a fixed threshold on distances.\n",
" '''\n",
" return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype)))\n",
"\n",
"\n",
"# the data, shuffled and split between train and test sets\n",
"(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
"x_train = x_train.reshape(60000, 784)\n",
"x_test = x_test.reshape(10000, 784)\n",
"x_train = x_train.astype('float32')\n",
"x_test = x_test.astype('float32')\n",
"x_train /= 255\n",
"x_test /= 255\n",
"input_dim = 784\n",
"epochs = 20\n",
"\n",
"# create training+test positive and negative pairs\n",
"digit_indices = [np.where(y_train == i)[0] for i in range(num_classes)]\n",
"tr_pairs, tr_y = create_pairs(x_train, digit_indices)\n",
"\n",
"digit_indices = [np.where(y_test == i)[0] for i in range(num_classes)]\n",
"te_pairs, te_y = create_pairs(x_test, digit_indices)\n",
"def show_nth(n):\n",
" plt.subplot(1,2,1)\n",
" plt.imshow(te_pairs[n][0].reshape(28,28))\n",
" print(te_y[n])\n",
" plt.subplot(1,2,2)\n",
" plt.imshow(te_pairs[n][1].reshape(28,28))\n",
"show_nth(0)\n",
"# # network definition\n",
"# base_network = create_base_network(input_dim)\n",
"\n",
"# input_a = Input(shape=(input_dim,))\n",
"# input_b = Input(shape=(input_dim,))\n",
"\n",
"# # because we re-use the same instance `base_network`,\n",
"# # the weights of the network\n",
"# # will be shared across the two branches\n",
"# processed_a = base_network(input_a)\n",
"# processed_b = base_network(input_b)\n",
"\n",
"# distance = Lambda(euclidean_distance,\n",
"# output_shape=eucl_dist_output_shape)([processed_a, processed_b])\n",
"\n",
"# model = Model([input_a, input_b], distance)\n",
"\n",
"# # train\n",
"# rms = RMSprop()\n",
"# model.compile(loss=contrastive_loss, optimizer=rms, metrics=[accuracy])\n",
"# model.fit([tr_pairs[:, 0], tr_pairs[:, 1]], tr_y,\n",
"# batch_size=128,\n",
"# epochs=epochs,\n",
"# validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y))\n",
"\n",
"# # compute final accuracy on training and test sets\n",
"# y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]])\n",
"# tr_acc = compute_accuracy(tr_y, y_pred)\n",
"# y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]])\n",
"# te_acc = compute_accuracy(te_y, y_pred)\n",
"\n",
"# print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc))\n",
"# print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAC7CAYAAAB1qmWGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAEYpJREFUeJzt3X+QVfV5x/HPAyzLL2tB44oILk0U\nxEQXWaBGneCvDnEiaKsZmWrRJEOSqtFIrIxOJG3shBkTNf6IFQUhrcpgFcGOk0AorWZUZEXkt1H5\noTD8SkyVGkWWffrHXjor3++Fy95z7+758n7NOHvvc7/3nuewDw/H+z3ne8zdBQDIvy4dnQAAIBs0\ndABIBA0dABJBQweARNDQASARNHQASAQNHQASQUMHgESU1dDNbKyZvWlmb5vZlKySAjoatY08svZe\nKWpmXSX9TtJFkrZIWiZpgruvzS49oPqobeRVtzLeO0rS2+6+QZLMbI6k8ZKKFn13q/Ue6l3GJoHi\nPtFH+tT3WAYfRW2jUym1tstp6AMkvdfm+RZJow/2hh7qrdF2QRmbBIpb6ouz+ihqG51KqbVdTkMv\niZlNkjRJknqoV6U3B1QNtY3OppxJ0a2SBrZ5fmIh9hnuPt3dG929sUa1ZWwOqBpqG7lUTkNfJulk\nMxtsZt0lXSlpQTZpAR2K2kYutfsrF3dvNrPrJf1aUldJM919TWaZAR2E2kZelfUdurs/L+n5jHIB\nOg1qG3nElaIAkAgaOgAkgoYOAImgoQNAImjoAJAIGjoAJIKGDgCJoKEDQCJo6ACQCBo6ACSChg4A\niaChA0AiaOgAkAgaOgAkgoYOAImgoQNAImjoAJAIGjoAJIKGDgCJKOueoma2SdJuSfskNbt7YxZJ\npa7b8XVB7IOz64PY1os8+v6N46YHsb2+Lzr27BVXBrFd7/WNjh02bXsQa970bnRs6qht5FFZDb3g\nPHf/fQafA3Q21DZyha9cACAR5TZ0l7TQzF4zs0lZJAR0EtQ2cqfcr1zOcfetZnacpEVmtt7dX2g7\noPCXYZIk9VCvMjcHVA21jdwp6wjd3bcWfu6UNE/SqMiY6e7e6O6NNaotZ3NA1VDbyKN2H6GbWW9J\nXdx9d+HxX0n6p8wyyxmrDf9Cb/jHM6NjH7j80SD2lZ5/Knlbez38d7hFLdGxLzY8EQYb4p/bcMw3\ngtigK0pOKxnUNvKqnK9c6iTNM7P9n/OEu/8qk6yAjkVtI5fa3dDdfYOkMzLMBegUqG3kFactAkAi\naOgAkIgsrhSFpHdvGRHEVl3984ps69rNFwSxGSctKvtzV3x5ZhAbp5Flfy6OHPvGhCcCdLtjRxB7\nbsiC6PtrrGsQO5xlLY65vSY61jZtDWJ/uGRYdGy/Z1cHsZbdu6NjOxuO0AEgETR0AEgEDR0AEkFD\nB4BE0NABIBGc5XKY/Kz49SYzv3F/5ts6/bHvReODf7w8iA2957ro2PXjH8w0Jxx5Ysta7B4XXz9i\n6k/CM6Viy1rEF6qQ9kbu6XI4y1qc+cNromPPOD48dp1f/0B07Mg/vyGI1d3/UnRsZ8MROgAkgoYO\nAImgoQNAImjoAJAIJkUPIjYB6ne+Hx07InJ/g2ITP/P+97ggNvOacUGsfumr8bxawkuhh3z/jejY\nrz773SD243+ZHh3bWBt+7oWr45c8/+aLR0XjSM+eMV8KYv95b3xCMWbJx32C2B13hmvvS1LNnyKz\nokV8eFJ4PNq9yG0F/uEH4WTtBy3N0bF9tsWXGsgDjtABIBE0dABIBA0dABJBQweARByyoZvZTDPb\naWar28T6mdkiM3ur8LNvZdMEskdtIzWlnOUyS9IDkn7ZJjZF0mJ3n2ZmUwrPb80+vY61c2TvILZs\naDhbLsUX5v+g5dPo2Klzw4X5619++TCz+yzfsyee18KmIHbVr78THbvmkvDMhVv6vRMd+8iTE4PY\n4AnxM206sVk6Qms7ptiyFj956OGSP2PCOxcHsQ+nDgxifZeUV++SdPQXBgexhqfi9Xpq9/DYdej8\n70fHnvLvS8tLrAMd8gjd3V+QdOC5euMlzS48ni3p0ozzAiqO2kZq2vsdep27bys83i6pLqN8gI5G\nbSO3yp4UdXeXVPRqADObZGZNZta0V/GvBYDOiNpG3rS3oe8ws/6SVPi5s9hAd5/u7o3u3lijyOWU\nQOdCbSO32nvp/wJJEyVNK/ycn1lGnUiXC/8QxIqtzRxbx/naDeHl/JJU/8PyJ4TKccp340sK3H/O\naUHs5n7ro2P/dtiyIPaSupeXWOdwRNR2zB9v/zgajy1rcfH6v46O7fqDPwtjr4fr92fhf0aE34ZN\nPW5uye8fuDDLbDqHUk5bfFLSy5KGmNkWM/umWov9IjN7S9KFhedArlDbSM0hj9DdfUKRly7IOBeg\nqqhtpIYrRQEgETR0AEgEDR0AEsENLiR1G3BCND55yG/K+twNT50cjddpV1mfWykz518YxG6+Nn6W\nC/Jt45zTg9ia4Y9Fx25pDs9+6XJ7fIkbf31leYlFWG38lNAv3LQ2iHUpcox67eZwWqTns/GzvfKM\nI3QASAQNHQASQUMHgETQ0AEgEUyKSvrjOYOi8cv7lH7V96T3xgSxAUXWZo7fazxfvthzSxB79S/O\nj45t3rCpwtngcP3dsHBCsNiyFpubw8v59Ur2k59SfAL0zXvj67TPH/RgEIvvgbT5riFBrJfyu+55\nMRyhA0AiaOgAkAgaOgAkgoYOAIlgUlTSrjOt7M94Z9qpQazn9vSuRNvva73DteLvbjw+OrYPk6I4\nQNfTwklKSVp3w9FBbP0l4eRnMUs+7hONH/XSxiC2r+RPzQ+O0AEgETR0AEgEDR0AEkFDB4BElHJP\n0ZlmttPMVreJ/cjMtprZisJ/F1c2TSB71DZSU8pZLrMkPSDplwfE73H3n2aeUQfY1yt+wXCxtZVj\nUlxbWZJqrGs0vternEhlzFLitV3M0xsbgtgtx6yKjh1e+1EQO3flJ2Vtf1SvZ6Lx83qGn1vscv6Y\nyW9cHo2fuGPNYXxKfh2yY7n7C5Ler0IuQFVR20hNOd+hX29mKwv/2xq/fQmQT9Q2cqm9Df0hSZ+X\n1CBpm6SfFRtoZpPMrMnMmvZqTzs3B1QNtY3caldDd/cd7r7P3VskPSJp1EHGTnf3RndvrFH83oBA\nZ0FtI8/adem/mfV3922Fp5dJWn2w8Z3d6advisaLrQ99JNnr8QukU/2zSa22izn+qq1BbNyzl0XH\n/sfQ8L4AxSZQy3XurTcEsZYJ4TITkvRiwxNB7LhHemWeU54csqGb2ZOSxkg61sy2SJoqaYyZNUhy\nSZskfbuCOQIVQW0jNYds6O4+IRKeUYFcgKqitpEarhQFgETQ0AEgETR0AEgEN7hAu2xu/jSI9dwV\nxtA5tezeHQYviMQknX/Z3wexnSNKPxbsuy5cJ+Lox1+Jjt31r+H5/Osb5kTHzvigPoj1WrMtHCip\n+SD5pYQjdABIBA0dABJBQweARNDQASARTIri/33r0oUljx3/2C1BbNCSl7JMB51Er3lLg1j9vMps\na/35jwaxYstMPPjmV4LYCe+tzTynPOEIHQASQUMHgETQ0AEgETR0AEgEDR0AEsFZLpI+uuOEaLzp\nsfCO94218Rs+vPvUl4LYoCsqcxOAShnZc2MQe3WPRcfW3/VGEEvzlheohK6nDSnyymtBJLbMhCTV\n3dcjw4zSwBE6ACSChg4AiaChA0AiDtnQzWygmS0xs7VmtsbMbizE+5nZIjN7q/Czb+XTBbJDbSM1\npUyKNkua7O7LzewoSa+Z2SJJ10ha7O7TzGyKpCmSbq1cqpXT5b9fj8avu/f6ILbs1vujYxeNfiiI\nXXPe96Jjuy5ZfhjZZW/jnNOj8bN7hBNSX349dttNqd9Hv8s0pw6SfG13Vhumdi957BWvfysaP76D\n/x51Roc8Qnf3be6+vPB
"text/plain": [
"<matplotlib.figure.Figure at 0x7f3fcf264a20>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"show_nth(5)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.0\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAAkCAYAAACZmsEQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAACeFJREFUeJztnFuMZEUZx39f1Tl9mZ5ZmGF1g4ou\nKDESHwwQJMQQEw23F9QHA8a4URJe5E0fMDzIg4mK8cWgJGtCIj5A8MG4CTG6Eg1PXtaE5WKyslyM\nrMiwl5mdnek+l6rPh6ruHYZdZ2d2prunt35J55yuPtX1r6p/fXVOnz4lqkoikUgkdj5m1AISiUQi\nsTWkgJ5IJBITQgroiUQiMSGkgJ5IJBITQgroiUQiMSGkgJ5IJBITwkUFdBG5Q0SOiMhREXlwq0Ql\nEqMmeTuxE1k3oIvI4yIyLyIvrUqbE5GDwAHgHeAW4F4RuW77pCYSW0vydmLSkPUeLBKRW4EzwBOq\n+smY9ggwDXwU+CMwCywAqOr3t1NwIrFVJG8nJo1svQNU9TkR2bsm+W7gR0AD+AXwJ+B7wKfX5heR\n+4H7AUwrv2Hvx3IaUnPKdchwtE1JT3MWqzYAXmWwdc5grSKieC+oCiLhvRElNw5FaBiHoHiEnstx\nXjCiWFGcCl6FpnUo4Lyh9gYRxZUWyRT1AgLGeLwXRGLdnZA3aqraAmCM4p0BUUQI+SqBhgJxYqwM\nSHwrIDVoroiTcITV8LkXkJhHBUzcryUco3EL4AEXRWV6Nq8JZYCGz53EtFiGxLxWz+bv79tYh/58\nXhvIfEirJZShgGVQN6nCd2gek2JeUVAT35tVx5pQDYnH2gJ8FnSZEnwOGh0oDsQHvaYGWzg0M6EZ\nVZGiAmPxDYupHDgP1oAIaoPWXvcUpVuRtR48Hxfj7dW+llZ+w+V7L2NPfpoMT42h0IzFeooq+s2r\noNFb6kJ/m9hWqhL6IXrfZg5VIbOelq1waijqDCNKWWSY3JNZjxWPoBQuw1X2bL/GMSOiuNoOfGat\nYsSTGQ+AU4P3oczaWYzxmOgdE8cTgPeCL+27fVUL0vCDsQM68FD4cjk7DqLXbCy37mXBx9E8ZsXg\nW8HPErX2txrbRCuDbdY4F00Vi8GG8SBZqJfrj+3aIjboM0bPtjGAF0zmQ1otIQbErTUep4IRcLUB\nBZOFdvEqfcujLvy4IYM+ZND+YezE8TMYpzHdC+KD32PVBuNnMAYiWddTdQy2gOWFN4+r6vtYh3UD\n+nnYQzxrAf4b369LvqvFJ362j72dEyEgi2M2W+HZ+Y8zvzRNp1ly8vQUWeax1lMUGa1WRa+X46Ph\nQu1DkG63S3Lr+PBlCxzvdvoxlMVui1Ze46JZK2fJjGeuswJAJy850Z3idLeFqtBuVJS1JbNhIPXK\nnHazxMbOKqqMqWbJdKPkrcVdNPMKAGuCAfZMneE/Z3bRqzJ63QZZ7ui0Soo6lHtqfgYEZq5YJjOe\nss5YPtWmtavg8ukVTp7u0GjU5NbRK3PqyjJ32TKnlqYwJg7MaCDnDHnumGoVeB/SlleaIEoWB1Nd\nh4nQe6GuLFOdAu+FoshxvYxGp0Q1DPC6suSNmu5ii6xd452gziALeQjGHnS2Qlcs0p8wpqswkAsL\nDY89keN21aGT40Rkliy2EKpZBx6kMogHU4Q+EQ+urUgt+KbHFKEu+RnBFtCeV1b2hH0EXANaJxXb\ng7oNjSUlXwn9YyolW3EcOvToJqz8Hjbs7Xymzecf/xIdWzLXWOZ03aL2ln+c2oOqcGJhGps5vDNn\nT1hqgxil0awplhuIDX0nBj6we4HSWdp5hRGlqDO6VUblLL1uA0SxVsnz0Oa7WgV19ML8O7todUqq\nMsPVBi1N6I9+AKtMCDy5J2s6xHhmOj0WFjp0ZnoURU4WJ5S6shjryXPHmeMdpuZWEIGyyLCZp5HX\n1M6gKpRlmHCmOz0y6+k0SpbLRugfUZa6TTqtchAYiyocv9xt4J3FV+FEqdGusNZjTPC8qmBM0N5u\nlhRVjjGeurY4F4J3XVtarYqZdo9emSOiLHebcVILgdnYkMcYT7XYZGr3Ct3lJngha1WDydUYpejm\nYSJRBnq6y83QhvFExxcWyT2NdkWx2EJ6JpzA5D4E7VJozVvqaUXjHIQo+elwwmdCCME1IeuGgJ4t\nh/DmmmF85EuKawmmVA4/9q1/XYh5NxvQAY4BV6mqSphOPxTT3oWq7gf2A4jI0jO3PnrkvV/1zEXI\ngMMXlfuC2A0c3/5izvLq1nzN0HVvEZvV/ZEtKn9db6/19a9u2X8OX2+O17fqi9bnUvPHOLCt3t5s\nQH8b+DdwrYjcBMwD9wBfWSffEVW9cZNljgwROZR0D48R696Mt5Ovh8hO1Q3br32zf1s8AHwVeIBw\nev1+4GlVfXmrhCUSIyJ5O7FjWfcMXUSeBD4L7BaRN4HvAj8AngbuI/zi8WVVPbmNOhOJLSd5OzFp\nXMi/XO49z0ef20R5+zeRZxxIuofLUHRvobdTOw+Xnaobtln7uv9DTyQSicTOIK3lkkgkEhNCCuiJ\nRCIxIQwloI/7Qkci8oaIvCgiz4vIoZg2JyIHReSVuJ2N6SIiP4l1eUFErh+izvOuPbIRnSKyLx7/\niojsG5Huh0XkWGzz50XkrlWffSfqPiIit69KHzsfjaOm1SRvj0T36Lytqtv6Ijw8/ipwDeFx6sPA\nddtd7gY1vgHsXpP2CPBg3H8Q+GHcvwv4LeGh1JuBvwxR563A9cBLm9UJzAGvxe1s3J8dge6HgW+f\n49jrokeawNXRO3YcfTSOms6hMXl7+LpH5u1hnKHfBBxV1ddUtQSeIqyXMe7cTVjLg7j9wqr0JzTw\nZ+ByEblyGIJU9Tlg7V/oNqrzduCgqp5U1VPAQeCOEeg+H3cDT6lqoaqvA0cJHhpHH42jpgsheXt7\ndZ+Pbff2MAL6BwlP3vV5M6aNEwr8XkT+LmHRJYA9qvpW3F+9pse41WejOsdJ/wPxkvnx/uU0O0N3\nn3HUtJbk7dEwEm+nm6KBz6jq9cCdwDclLKs6QMP10tj/v3On6Iw8Rlii9lPAW8CPRytnYkneHj4j\n8/YwAvox4KpV78+5iNcoUdVjcTsP/JpwCfR2/3Izbufj4eNWn43qHAv9qvq2qjpV9cDPCW3O/9E3\nFrrXMI6a3kXy9qXl7WEE9L8RFjq6WkQahIWODgyh3AtCRDoiMtPfB24DXiJo7N8l3wf8Ju4fAL4W\n77TfDCyuuiwcBRvV+TvgNhGZjZeCt8W0obLmt9kvEtocgu57RKQpIlcD1wJ/ZTx9NI6aBiRvX4Le\n3s47wKvu7t4F/JNwJ/ehYZS5AW3XEO4qHwZe7usDrgCeBV4B/gDMxXQBfhrr8iJw4xC1Pkm4hKsI\nv7PdtxmdwDcIN2SOAl8fke5fRl0vRPNeuer4h6LuI8Cd4+yjcdSUvH3pejs9+p9IJBITQropmkgk\nEhNCCuiJRCIxIaSAnkgkEhNCCuiJRCIxIaSAnkgkEhNCCuiJRCIxIaSAnkgkEhPC/wCGQslVMqHG\n+wAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f3fcf1c84e0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"'''Train a Siamese MLP on pairs of digits from the MNIST dataset.\n",
"\n",
"It follows Hadsell-et-al.'06 [1] by computing the Euclidean distance on the\n",
"output of the shared network and by optimizing the contrastive loss (see paper\n",
"for mode details).\n",
"\n",
"[1] \"Dimensionality Reduction by Learning an Invariant Mapping\"\n",
" http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf\n",
"\n",
"Gets to 97.2% test accuracy after 20 epochs.\n",
"2 seconds per epoch on a Titan X Maxwell GPU\n",
"'''\n",
"from __future__ import absolute_import\n",
"from __future__ import print_function\n",
"import numpy as np\n",
"\n",
"# import random\n",
"# from keras.datasets import mnist\n",
"from speech_data import speech_model_data\n",
"from keras.models import Model\n",
"from keras.layers import Input, Dense, Dropout, SimpleRNN, LSTM, Lambda\n",
"# Dense, Dropout, Input, Lambda, LSTM, SimpleRNN\n",
"from keras.optimizers import RMSprop, SGD\n",
"from keras.callbacks import TensorBoard\n",
"from keras import backend as K\n",
"\n",
"\n",
"def euclidean_distance(vects):\n",
" x, y = vects\n",
" return K.sqrt(K.maximum(K.sum(K.square(x - y), axis=1, keepdims=True),\n",
" K.epsilon()))\n",
"\n",
"\n",
"def eucl_dist_output_shape(shapes):\n",
" shape1, shape2 = shapes\n",
" return (shape1[0], 1)\n",
"\n",
"\n",
"def contrastive_loss(y_true, y_pred):\n",
" '''Contrastive loss from Hadsell-et-al.'06\n",
" http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf\n",
" '''\n",
" margin = 1\n",
" # print(y_true, y_pred)\n",
" return K.mean(y_true * K.square(y_pred) +\n",
" (1 - y_true) * K.square(K.maximum(margin - y_pred, 0)))\n",
"\n",
"\n",
"def create_base_rnn_network(input_dim):\n",
" '''Base network to be shared (eq. to feature extraction).\n",
" '''\n",
" inp = Input(shape=input_dim)\n",
" # d1 = Dense(1024, activation='sigmoid')(inp)\n",
" # # d2 = Dense(2, activation='sigmoid')(d1)\n",
" ls1 = LSTM(1024, return_sequences=True)(inp)\n",
" ls2 = LSTM(512, return_sequences=True)(ls1)\n",
" ls3 = LSTM(32)(ls2) # , return_sequences=True\n",
" # sr2 = SimpleRNN(128, return_sequences=True)(sr1)\n",
" # sr3 = SimpleRNN(32)(sr2)\n",
" # x = Dense(128, activation='relu')(sr1)\n",
" return Model(inp, ls3)\n",
"\n",
"def create_base_network(input_dim):\n",
" '''Base network to be shared (eq. to feature extraction).\n",
" '''\n",
" input = Input(shape=input_dim)\n",
" x = Dense(128, activation='relu')(input)\n",
" x = Dropout(0.1)(x)\n",
" x = Dense(128, activation='relu')(x)\n",
" x = Dropout(0.1)(x)\n",
" x = Dense(128, activation='relu')(x)\n",
" return Model(input, x)\n",
"\n",
"def compute_accuracy(y_true, y_pred):\n",
" '''Compute classification accuracy with a fixed threshold on distances.\n",
" '''\n",
" pred = y_pred.ravel() < 0.5\n",
" return np.mean(pred == y_true)\n",
"\n",
"\n",
"def accuracy(y_true, y_pred):\n",
" '''Compute classification accuracy with a fixed threshold on distances.\n",
" '''\n",
" return K.mean(K.equal(y_true, K.cast(y_pred < 0.5, y_true.dtype)))\n",
"\n",
"\n",
"# the data, shuffled and split between train and test sets\n",
"tr_pairs, te_pairs, tr_y, te_y = speech_model_data()\n",
"\n",
"# y_train.shape,y_test.shape\n",
"# x_train.shape,x_test.shape\n",
"# x_train = x_train.reshape(60000, 784)\n",
"# x_test = x_test.reshape(10000, 784)\n",
"# x_train = x_train.astype('float32')\n",
"# x_test = x_test.astype('float32')\n",
"# x_train /= 255\n",
"# x_test /= 255\n",
"\n",
"# input_dim = (tr_pairs.shape[2], tr_pairs.shape[3])\n",
"# epochs = 20\n",
"\n",
"# # network definition\n",
"# base_network = create_base_rnn_network(input_dim)\n",
"# input_a = Input(shape=input_dim)\n",
"# input_b = Input(shape=input_dim)\n",
"\n",
"# # because we re-use the same instance `base_network`,\n",
"# # the weights of the network\n",
"# # will be shared across the two branches\n",
"# processed_a = base_network(input_a)\n",
"# processed_b = base_network(input_b)\n",
"\n",
"# distance = Lambda(euclidean_distance,\n",
"# output_shape=eucl_dist_output_shape)(\n",
"# [processed_a, processed_b]\n",
"# )\n",
"\n",
"# model = Model([input_a, input_b], distance)\n",
"\n",
"# tb_cb = TensorBoard(log_dir='./siamese_logs', histogram_freq=1, batch_size=32,\n",
"# write_graph=True, write_grads=True, write_images=True,\n",
"# embeddings_freq=0, embeddings_layer_names=None,\n",
"# embeddings_metadata=None)\n",
"# # train\n",
"# rms = RMSprop(lr=0.00001) # lr=0.001)\n",
"# sgd = SGD(lr=0.001)\n",
"# model.compile(loss=contrastive_loss, optimizer=rms, metrics=[accuracy])\n",
"# model.fit([tr_pairs[:, 0], tr_pairs[:, 1]], tr_y,\n",
"# batch_size=128,\n",
"# epochs=epochs,\n",
"# validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y),\n",
"# callbacks=[tb_cb])\n",
"\n",
"# # compute final accuracy on training and test sets\n",
"# y_pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]])\n",
"# tr_acc = compute_accuracy(tr_y, y_pred)\n",
"# y_pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]])\n",
"# te_acc = compute_accuracy(te_y, y_pred)\n",
"\n",
"# print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc))\n",
"# print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))\n"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.0\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA2UAAAG6CAYAAACIge6AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvXuYleV5qH9/s2aYgQEHBxwQHB0U\nhCiWMRAxokFJPMQkmtRkG9McTOqOTZNt293spmlyxaSpjWnTdue02/izxpo0xsacjHVvjfEQDxFF\nheABFARFURAQ5DjMrPl+f8ws6xEYc38zHy/PfV29GsfxZn0wrGc97/scsjzPCYIgCIIgCIIgCIaG\nuqF+AUEQBEEQBEEQBPsykZQFQRAEQRAEQRAMIZGUBUEQBEEQBEEQDCGRlAVBEARBEARBEAwhkZQF\nQRAEQRAEQRAMIZGUBUEQBEEQBEEQDCGRlAVBEARBEARBEAwhkZQFQRAEQRAEQRAMIZGUBUEQBEEQ\nBEEQDCH1Q/0CdkXWODZnRIcnbPFUL7BJ9u2wfdtkIXDoCNe3wdUFQWnYeO+6PM8PMFSTsyw3/zY/\nDdfneX6aqAwGmSwbm8MhnrAj81w1Vru6ylHdqq/aXVF9ACMa3Ljbg/sau6sNqg+AvICfnSBp8lVP\nkK9fr/zg2PERhiZGljop46AO+NsFnm+Lp3qB22Xf5bnre3cBb5Sfl33Xyr4gKAtfzB63VNuA8y0Z\n8EUYK+qCoWBYB0zwYuSMFXdprhqL2o9VfdX3qDr4oJvkAUw7ZL7q28j+qu+xNx+p+gD/c0GQPn86\nS1PZ8RGGJkaWOymrAKNFXxG/vTfKvk/JSdS3/tn1ASO//17Vt+Uu5SIhCJImo+xv2MGgs7MbVq7R\ndItudRMowP+h9T7HAVDXtNMVAlX5oUfg3gGM/81jqg/gmQcP1Z1B4gzzVKnEx3I/g52U2QkUwBLZ\nZyeOIz8hC2GLeHkJwELZFwRBsC8wogGOGKfpmjr9WvId01pV38jjn1V927bI5fh7Ac/82E+gGk58\nXncGadPTUB3ql1A6yp2U7QSeFH1vE101lsm+78u+kbIPP3DvuMsN2kGQIhlQQCdIsDczEjje0x3R\n8pAn6+e+leILBHp63P6q3o3Nqg+gOs59jV3mlQLALL9ksyr/uQTpk4t9iKnEx3InZSOATrHH6q4C\n+qs2yj63MhCekX1Afb18ulFEr18QJEYq5RmByAig09NNYqUn6+e+LW5StuMZ+RCvyU9QKrgxchxr\nVd+jO2aoPoDennh3CgZIrzcAPpX4WO5nqOulbqRXS9073j8R02+i7D5rO2kEtjwp94CZJapBEAT7\nCj3AOk93OI94shrTZZ9d7j6r3B+DAG5/6gTV1zDWLzXs3jJcdwaJk8mD7RKg3O9GO+roXSImUld7\nqhcYL/vsnjK7vBIYP9VtEn7mX6JBOAh2RyrlGYGIXOJflUevA9iXby3vdss/Nm8cpfqK4KCJq1Tf\nk8snqz6AprHP6c4gbboq3o1yKvGx3ElZUy9107Zqut53F3BTVvZx7v57Lxs3yVdbBbzGIAiC5GkB\nxC06hSRl8sHlppWusGl8+Rdlns51qu/Ow45TfQAbo+QlGCBrxKQsFUqdlNU39LD/uPWa79nRBSRl\ndnngXT92feed5foooKcsCILdkkrNfCCS01fCKDFcHr0OwC3eyH4ANnrTJgG/2gU/uZ2Nu/dsPrNV\nH/gLroP0MYsXU4mPu32GLMsuA94JrM3zfPqLvv4/gE8CVeA/8zz/i/6vfxb4w/6vX5Dn+fX9Xz8N\n+Dp9g+4vzfP84t392j3d9axfM2bAD/WaFDD0wgyIAIyUk6gHXB1AxU7KCuh7C4LUSKU8IzWGMkay\nFRBXlNz9Dv/DOpPdJKql0w3kejwDhtGl+uzBIWdzleoDuJTzdGeQNnX0aq5U4uOeJJaXA98Crqh9\nIcuyk4AzgRl5nndlWdbW//UjgPcDRwITgBuzLDu8/z/7NnAyfRXw92RZdk2e57uev9tTR+8z4u1W\npz9lie/LPwZ2T5mdNAKblshHi1H1EATB3svlDFWMXAN8zXuQIy70R+LfMO1M1bdpgRt/xs/xFynb\ny6PH4d422suoASpFfNgIkqaAeeh7Pbt958jz/NdZlnW87MufAC7O87yr/3tq81rPBH7Y//UVWZYt\nA47p/3fL8jx/DCDLsh/2f++uI8Bq4It78hh7yAcLyKPtEfa3yz5zz1s/rdOfUn0brp6o+oIgRVIp\nz0iNIY2RYwCxuMK+kSmEg9zD1e1dBSyPbnR1q2hXfUuZqvoAdtoPHSRPLqZlqcTH1/sMhwMnZFl2\nEbAD+HSe5/cAE3npUPcn+78GsOplX3/VOoksyz4OfByAMQe7SU+H6KohjiMG/Ne4UvZRwJJIcc9O\nEKRKKuUZ+wiDEyP3O1itNGjHnfIH9D29SOtB7s6unTvkxcygJ2X3c7Tquw13xH4QDDWpxMfXm5TV\nA63AscCbgP/IskyZa57n+SXAJQDZjJk5J4rv6M80ea6iuEu+Knu3u7gT/OlXeslmEATB0DI4MXLi\nrNzclbmNAm6N5LUsHZUVqm99c/kDkH1TVsSkxEKGxARJk6mjPtLg9SZlTwI/yfM8B+7OsqyXvo/W\nT8FL3j0O6v8au/j6a7+4hp2Mnbj6db7EV1Kd6F9u2lORrm16n+orgoOmPqr6uqZG2UOQJs+KrlTK\nM/YRBiVG2myjgAXAcs5z3+PuMJIDDnla9QGMlqdX2dMcn7x1iuoDaOos/2qBoFzsrHp3W6nEx9f7\nDD8DTgJu7m9SHkZfId81wA+yLPtH+pqYpwB30/f7NSXLskn0BZr3Ax/Y/S+TqQ2zmzeJR4r9XHut\nnES929UVMXHyyTvkN/SYvhgEQVoMTozsRu0b3kIBi5Q7ZN9Kt0hpfZM44bmfCeO8w2SANnnQBwf5\nNxQ79oIl3EHJqMYahZezJyPxrwROBMZmWfYkcCFwGXBZlmUPADuBj/SfCD6YZdl/0Nec3AN8Ms/z\nar/nU8D19I37vSzP8wd392vbI/Hbx/n18qP/4BHVt+iDx6o+PuXqAH9a4vi4wg6C3ZFKzXxqDGWM\ntPeUdRTRhHyQqztk7hLVt2qNWxpYBPY0R9b5c+9aOr2dssG+wZYG780rlfi4J9MXz3mNf/XB1/j+\ni4CLXuXr18HA1tJX6quMHL15IP/JLnn8O9M01wtOfUiFXJc9q4AegS2yb2UMRg2C3ZFK0EmNoYyR\nNAFiWFuDvJgZ9PJFewdY7zJx7U4N+bfRHjdf17FV9UEx+96CxBE/+qUSH0tdgpllOcMad3rCIp72\nZ7JvtJxEFTHbRG7cjvUmQRAEr4MKauWCPVAC0CcUj8I7qAV4w5z7VF8R2DdlvUv8RHTCXH/HXZA2\n2xA/3ydCqZOynu3DePbBgzVfw7uf11w1uq/dzxXal3mz/NLAGYe5w00WLZVLNoMgUUr9hh0MPr2o\nlQuFLACWd2WOxS2T6ymgqXm9fD1oJ6LmxM4a+msMkqdCr+pLIT6W+hkqw7tpmeYNoNrwqQKWFE+W\nfaX+E+lj6abDXaF98xYECZJKeUYgI8aMu199NdrvhnxTdsNTp6q+6RMXqz7wl3Db0xcPmen25QGs\nwx+YEqRNj/jmlUp8LHUKUN3RwIZlYiL16QIGSjwj90PJr7G1w50CBfDeytWq75LJf6L6giAIgoFT\nxPLoh0e+UfW9YaJbJmcnPOAnZUfgPvMCZqo+gJ32xuwgeTL5piwFSp2UVRq7GdnhzXTftExeegy0\nHuuuktkgl2ZUKv6SyFksUH1XTx70dTxBMCiYm3tS2cMSiPSg3kQdzlJP1s8N8qCPLvnD/wT8g8vN\n8mqBlfJegSISKDsRDdLHvNJIJT6W+hnqsl5GNXp1yu868heaq4b9Znn7iServhH4ZQo98slie8U/\nnQ2CMmAnZSmUZwQidaj
"text/plain": [
"<matplotlib.figure.Figure at 0x7f3fcd509f60>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"def plot_spec(ims):\n",
" timebins, freqbins = np.shape(ims)\n",
" # import pdb;pdb.set_trace()\n",
"# plt.figure(figsize=(15, 7.5))\n",
" plt.imshow(np.transpose(ims), origin=\"lower\", aspect=\"auto\", cmap=\"jet\", interpolation=\"none\")\n",
" plt.colorbar()\n",
" xlocs = np.float32(np.linspace(0, timebins-1, 5))\n",
" plt.xticks(xlocs, [\"%.02f\" % l for l in ((xlocs*15/timebins)+(0.5*2**10))/22100])\n",
" ylocs = np.int16(np.round(np.linspace(0, freqbins-1, 10)))\n",
"# plt.yticks(ylocs, [\"%.02f\" % freq[i] for i in ylocs])\n",
" \n",
"def show_nth(n):\n",
" plt.figure(figsize=(15,7.5))\n",
" plt.subplot(1,2,1)\n",
" plot_spec(te_pairs[n][0].reshape(15,1654))\n",
" print(te_y[n])\n",
" plt.subplot(1,2,2)\n",
" plot_spec(te_pairs[n][1].reshape(15,1654))\n",
"show_nth(0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}