Paper can be found at [Springer](https://link.springer.com/chapter/10.1007/978-3-319-59081-3_23) and [arXiv](https://arxiv.org/abs/1701.01546).
Prerequisites:
- keras
- tensorflow
- h5py
- scikit-image
- scikit-learn
- sk-video
- tqdm (for progressbar)
- coloredlogs (optional, for colored terminal logs only)
You can use the `Dockerfile` provided to build the environment then enter the environment using `nvidia-docker run --rm -it -v HOST_FOLDER:/share DOCKER_IMAGE bash`.
To train the model, just run `python start_train.py`. Default configuration can be found at `config.yml`. You need to prepare video dataset you plan to train/evaluate on. You may get the benchmark dataset videos from respective authors. For each dataset, put the training videos into `VIDEO_ROOT_PATH/DATASET_NAME/training_videos` and testing videos into `VIDEO_ROOT_PATH/DATASET_NAME/testing_videos`. Example structure of training videos for `avenue` dataset: