import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('../mnist_data', one_hot=True) x = tf.placeholder(tf.float32,shape=[None,28*28]) y_ = tf.placeholder(tf.float32,shape=[None,10]) # W = tf.Variable(tf.zeros([28*28,10])) # b = tf.Variable(tf.zeros([10])) # # y = tf.matmul(x,W) + b # # cross_entropy = tf.reduce_mean( # tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) # # train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) # # with tf.Session() as sess: # sess.run(tf.global_variables_initializer()) # for _ in range(1000): # batch = mnist.train.next_batch(100) # sess.run([train_step],feed_dict={x: batch[0], y_: batch[1]}) # correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) # accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})) def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 2, 2, 1], padding='VALID') # def max_pool_3x3(x): # return tf.nn.max_pool(x, ksize=[1, 5, 5, 1], # strides=[1, 2, 2, 1], padding='SAME') x_image = tf.reshape(x, [-1, 28, 28, 1]) W_conv1 = weight_variable([4, 4, 1, 128]) b_conv1 = bias_variable([128]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) W_conv1 h_conv1 # h_pool1 = max_pool_3x3(h_conv1) # h_pool1 h_conv1 W_conv2 = weight_variable([5, 5, 128, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_conv1, W_conv2) + b_conv2) h_conv2 # h_pool2 = max_pool_3x3(h_conv2) # h_pool2 W_fc1 = weight_variable([5 * 5 * 64, 512]) W_fc1 b_fc1 = bias_variable([512]) h_pool2_flat = tf.reshape(h_conv2, [-1, 5*5*64]) h_pool2_flat h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) h_fc1 keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) h_fc1_drop W_fc2 = weight_variable([512, 10]) b_fc2 = bias_variable([10]) y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 y_conv cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(20000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) print('step %d, training accuracy %g' % (i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print('test accuracy %g' % accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))