From b27939044ba20dcde2c87d5ac79e422eaf8643be Mon Sep 17 00:00:00 2001 From: Malar Kannan Date: Sat, 14 Oct 2017 09:11:39 +0530 Subject: [PATCH] included mnist examples --- mnist_deep.py | 176 +++++++++++++++++++++++++++++++++++++++++++ mnist_softmax.py | 79 +++++++++++++++++++ tensorflow_train.py | 180 ++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 435 insertions(+) create mode 100644 mnist_deep.py create mode 100644 mnist_softmax.py create mode 100644 tensorflow_train.py diff --git a/mnist_deep.py b/mnist_deep.py new file mode 100644 index 0000000..4b5b504 --- /dev/null +++ b/mnist_deep.py @@ -0,0 +1,176 @@ +# Copyright 2015 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== + +"""A deep MNIST classifier using convolutional layers. + +See extensive documentation at +https://www.tensorflow.org/get_started/mnist/pros +""" +# Disable linter warnings to maintain consistency with tutorial. +# pylint: disable=invalid-name +# pylint: disable=g-bad-import-order + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import argparse +import sys +import tempfile + +from tensorflow.examples.tutorials.mnist import input_data + +import tensorflow as tf + +FLAGS = None + + +def deepnn(x): + """deepnn builds the graph for a deep net for classifying digits. + + Args: + x: an input tensor with the dimensions (N_examples, 784), where 784 is the + number of pixels in a standard MNIST image. + + Returns: + A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with values + equal to the logits of classifying the digit into one of 10 classes (the + digits 0-9). keep_prob is a scalar placeholder for the probability of + dropout. + """ + # Reshape to use within a convolutional neural net. + # Last dimension is for "features" - there is only one here, since images are + # grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc. + with tf.name_scope('reshape'): + x_image = tf.reshape(x, [-1, 28, 28, 1]) + + # First convolutional layer - maps one grayscale image to 32 feature maps. + with tf.name_scope('conv1'): + W_conv1 = weight_variable([5, 5, 1, 32]) + b_conv1 = bias_variable([32]) + h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) + + # Pooling layer - downsamples by 2X. + with tf.name_scope('pool1'): + h_pool1 = max_pool_2x2(h_conv1) + + # Second convolutional layer -- maps 32 feature maps to 64. + with tf.name_scope('conv2'): + W_conv2 = weight_variable([5, 5, 32, 64]) + b_conv2 = bias_variable([64]) + h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) + + # Second pooling layer. + with tf.name_scope('pool2'): + h_pool2 = max_pool_2x2(h_conv2) + + # Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image + # is down to 7x7x64 feature maps -- maps this to 1024 features. + with tf.name_scope('fc1'): + W_fc1 = weight_variable([7 * 7 * 64, 1024]) + b_fc1 = bias_variable([1024]) + + h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) + h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) + + # Dropout - controls the complexity of the model, prevents co-adaptation of + # features. + with tf.name_scope('dropout'): + keep_prob = tf.placeholder(tf.float32) + h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) + + # Map the 1024 features to 10 classes, one for each digit + with tf.name_scope('fc2'): + W_fc2 = weight_variable([1024, 10]) + b_fc2 = bias_variable([10]) + + y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 + return y_conv, keep_prob + + +def conv2d(x, W): + """conv2d returns a 2d convolution layer with full stride.""" + return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') + + +def max_pool_2x2(x): + """max_pool_2x2 downsamples a feature map by 2X.""" + return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], + strides=[1, 2, 2, 1], padding='SAME') + + +def weight_variable(shape): + """weight_variable generates a weight variable of a given shape.""" + initial = tf.truncated_normal(shape, stddev=0.1) + return tf.Variable(initial) + + +def bias_variable(shape): + """bias_variable generates a bias variable of a given shape.""" + initial = tf.constant(0.1, shape=shape) + return tf.Variable(initial) + + +def main(_): + # Import data + mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) + + # Create the model + x = tf.placeholder(tf.float32, [None, 784]) + + # Define loss and optimizer + y_ = tf.placeholder(tf.float32, [None, 10]) + + # Build the graph for the deep net + y_conv, keep_prob = deepnn(x) + + with tf.name_scope('loss'): + cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_, + logits=y_conv) + cross_entropy = tf.reduce_mean(cross_entropy) + + with tf.name_scope('adam_optimizer'): + train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) + + with tf.name_scope('accuracy'): + correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) + correct_prediction = tf.cast(correct_prediction, tf.float32) + accuracy = tf.reduce_mean(correct_prediction) + + graph_location = tempfile.mkdtemp() + print('Saving graph to: %s' % graph_location) + train_writer = tf.summary.FileWriter(graph_location) + train_writer.add_graph(tf.get_default_graph()) + + with tf.Session() as sess: + sess.run(tf.global_variables_initializer()) + for i in range(20000): + batch = mnist.train.next_batch(50) + if i % 100 == 0: + train_accuracy = accuracy.eval(feed_dict={ + x: batch[0], y_: batch[1], keep_prob: 1.0}) + print('step %d, training accuracy %g' % (i, train_accuracy)) + train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) + + print('test accuracy %g' % accuracy.eval(feed_dict={ + x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--data_dir', type=str, + default='/tmp/tensorflow/mnist/input_data', + help='Directory for storing input data') + FLAGS, unparsed = parser.parse_known_args() + tf.app.run(main=main, argv=[sys.argv[0]] + unparsed) diff --git a/mnist_softmax.py b/mnist_softmax.py new file mode 100644 index 0000000..addd2d3 --- /dev/null +++ b/mnist_softmax.py @@ -0,0 +1,79 @@ +# Copyright 2015 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== + +"""A very simple MNIST classifier. + +See extensive documentation at +https://www.tensorflow.org/get_started/mnist/beginners +""" +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import argparse +import sys + +from tensorflow.examples.tutorials.mnist import input_data + +import tensorflow as tf + +FLAGS = None + + +def main(_): + # Import data + mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) + + # Create the model + x = tf.placeholder(tf.float32, [None, 784]) + W = tf.Variable(tf.zeros([784, 10])) + b = tf.Variable(tf.zeros([10])) + y = tf.matmul(x, W) + b + + # Define loss and optimizer + y_ = tf.placeholder(tf.float32, [None, 10]) + + # The raw formulation of cross-entropy, + # + # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)), + # reduction_indices=[1])) + # + # can be numerically unstable. + # + # So here we use tf.nn.softmax_cross_entropy_with_logits on the raw + # outputs of 'y', and then average across the batch. + cross_entropy = tf.reduce_mean( + tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) + train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) + + sess = tf.InteractiveSession() + tf.global_variables_initializer().run() + # Train + for _ in range(1000): + batch_xs, batch_ys = mnist.train.next_batch(100) + sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) + + # Test trained model + correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) + accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) + print(sess.run(accuracy, feed_dict={x: mnist.test.images, + y_: mnist.test.labels})) + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--data_dir', type=str, default='/tmp/tensorflow/mnist/input_data', + help='Directory for storing input data') + FLAGS, unparsed = parser.parse_known_args() + tf.app.run(main=main, argv=[sys.argv[0]] + unparsed) diff --git a/tensorflow_train.py b/tensorflow_train.py new file mode 100644 index 0000000..9657f70 --- /dev/null +++ b/tensorflow_train.py @@ -0,0 +1,180 @@ +import tensorflow as tf + +node1 = tf.constant(3.0, dtype=tf.float32) +node2 = tf.constant(4.0) # also tf.float32 implicitly +print(node1, node2) + +sess = tf.Session() +print(sess.run([node1, node2])) + +node3 = tf.add(node1, node2) +print("node3:", node3) +print("sess.run(node3):", sess.run(node3)) + + +a = tf.placeholder(tf.float32) +b = tf.placeholder(tf.float32) +adder_node = a + b # + provides a shortcut for tf.add(a, b) + + +print(sess.run(adder_node, {a: 3, b: 4.5})) +print(sess.run(adder_node, {a: [1, 3], b: [2, 4]})) + +add_and_triple = adder_node * 3. +print(sess.run(add_and_triple, {a: 3, b: 4.5})) + +W = tf.Variable([.3], dtype=tf.float32) +b = tf.Variable([-.3], dtype=tf.float32) +x = tf.placeholder(tf.float32) +linear_model = W * x + b + +init = tf.global_variables_initializer() +sess.run(init) +print(sess.run(linear_model, {x: [1, 2, 3, 4]})) + +y = tf.placeholder(tf.float32) +squared_deltas = tf.square(linear_model - y) +loss = tf.reduce_sum(squared_deltas) + +print(sess.run(loss, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]})) + +fixW = tf.assign(W, [-1.]) +fixb = tf.assign(b, [1.]) +sess.run([fixW, fixb]) +print(sess.run(loss, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]})) + +optimizer = tf.train.GradientDescentOptimizer(0.01) +train = optimizer.minimize(loss) + +sess.run(init) # reset values to incorrect defaults. +for i in range(1000): + sess.run(train, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]}) + +print(sess.run([W, b])) + + + + + +import tensorflow as tf + +# Model parameters +W = tf.Variable([.3], dtype=tf.float32) +b = tf.Variable([-.3], dtype=tf.float32) +# Model input and output +x = tf.placeholder(tf.float32) +linear_model = W * x + b +y = tf.placeholder(tf.float32) + +# loss +loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares +# optimizer +optimizer = tf.train.GradientDescentOptimizer(0.01) +train = optimizer.minimize(loss) + +# training data +x_train = [1, 2, 3, 4] +y_train = [0, -1, -2, -3] +# training loop +init = tf.global_variables_initializer() +sess = tf.Session() +sess.run(init) # reset values to wrong +for i in range(1000): + sess.run(train, {x: x_train, y: y_train}) + +# evaluate training accuracy +curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x: x_train, y: y_train}) +print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss)) + + + + + +import tensorflow as tf +# NumPy is often used to load, manipulate and preprocess data. +import numpy as np + +# Declare list of features. We only have one numeric feature. There are many +# other types of columns that are more complicated and useful. +feature_columns = [tf.feature_column.numeric_column("x", shape=[1])] + +# An estimator is the front end to invoke training (fitting) and evaluation +# (inference). There are many predefined types like linear regression, +# linear classification, and many neural network classifiers and regressors. +# The following code provides an estimator that does linear regression. +estimator = tf.estimator.LinearRegressor(feature_columns=feature_columns) + +# TensorFlow provides many helper methods to read and set up data sets. +# Here we use two data sets: one for training and one for evaluation +# We have to tell the function how many batches +# of data (num_epochs) we want and how big each batch should be. +x_train = np.array([1., 2., 3., 4.]) +y_train = np.array([0., -1., -2., -3.]) +x_eval = np.array([2., 5., 8., 1.]) +y_eval = np.array([-1.01, -4.1, -7, 0.]) +input_fn = tf.estimator.inputs.numpy_input_fn( + {"x": x_train}, y_train, batch_size=4, num_epochs=None, shuffle=True) +train_input_fn = tf.estimator.inputs.numpy_input_fn( + {"x": x_train}, y_train, batch_size=4, num_epochs=1000, shuffle=False) +eval_input_fn = tf.estimator.inputs.numpy_input_fn( + {"x": x_eval}, y_eval, batch_size=4, num_epochs=1000, shuffle=False) + +# We can invoke 1000 training steps by invoking the method and passing the +# training data set. +estimator.train(input_fn=input_fn, steps=1000) + +# Here we evaluate how well our model did. +train_metrics = estimator.evaluate(input_fn=train_input_fn) +eval_metrics = estimator.evaluate(input_fn=eval_input_fn) +print("train metrics: %r"% train_metrics) +print("eval metrics: %r"% eval_metrics) + + + + + + +import numpy as np +import tensorflow as tf + +# Declare list of features, we only have one real-valued feature +def model_fn(features, labels, mode): + # Build a linear model and predict values + W = tf.get_variable("W", [1], dtype=tf.float64) + b = tf.get_variable("b", [1], dtype=tf.float64) + y = W * features['x'] + b + # Loss sub-graph + loss = tf.reduce_sum(tf.square(y - labels)) + # Training sub-graph + global_step = tf.train.get_global_step() + optimizer = tf.train.GradientDescentOptimizer(0.01) + train = tf.group(optimizer.minimize(loss), + tf.assign_add(global_step, 1)) + # EstimatorSpec connects subgraphs we built to the + # appropriate functionality. + return tf.estimator.EstimatorSpec( + mode=mode, + predictions=y, + loss=loss, + train_op=train) + +estimator = tf.estimator.Estimator(model_fn=model_fn) +# define our data sets +x_train = np.array([1., 2., 3., 4.]) +y_train = np.array([0., -1., -2., -3.]) +x_eval = np.array([2., 5., 8., 1.]) +y_eval = np.array([-1.01, -4.1, -7, 0.]) +input_fn = tf.estimator.inputs.numpy_input_fn( + {"x": x_train}, y_train, batch_size=4, num_epochs=None, shuffle=True) +train_input_fn = tf.estimator.inputs.numpy_input_fn( + {"x": x_train}, y_train, batch_size=4, num_epochs=1000, shuffle=False) +eval_input_fn = tf.estimator.inputs.numpy_input_fn( + {"x": x_eval}, y_eval, batch_size=4, num_epochs=1000, shuffle=False) + +# train +estimator.train(input_fn=input_fn, steps=1000) +# Here we evaluate how well our model did. +train_metrics = estimator.evaluate(input_fn=train_input_fn) +eval_metrics = estimator.evaluate(input_fn=eval_input_fn) +print("train metrics: %r"% train_metrics) +print("eval metrics: %r"% eval_metrics)