181 lines
5.7 KiB
Python
181 lines
5.7 KiB
Python
|
|
import tensorflow as tf
|
||
|
|
|
||
|
|
node1 = tf.constant(3.0, dtype=tf.float32)
|
||
|
|
node2 = tf.constant(4.0) # also tf.float32 implicitly
|
||
|
|
print(node1, node2)
|
||
|
|
|
||
|
|
sess = tf.Session()
|
||
|
|
print(sess.run([node1, node2]))
|
||
|
|
|
||
|
|
node3 = tf.add(node1, node2)
|
||
|
|
print("node3:", node3)
|
||
|
|
print("sess.run(node3):", sess.run(node3))
|
||
|
|
|
||
|
|
|
||
|
|
a = tf.placeholder(tf.float32)
|
||
|
|
b = tf.placeholder(tf.float32)
|
||
|
|
adder_node = a + b # + provides a shortcut for tf.add(a, b)
|
||
|
|
|
||
|
|
|
||
|
|
print(sess.run(adder_node, {a: 3, b: 4.5}))
|
||
|
|
print(sess.run(adder_node, {a: [1, 3], b: [2, 4]}))
|
||
|
|
|
||
|
|
add_and_triple = adder_node * 3.
|
||
|
|
print(sess.run(add_and_triple, {a: 3, b: 4.5}))
|
||
|
|
|
||
|
|
W = tf.Variable([.3], dtype=tf.float32)
|
||
|
|
b = tf.Variable([-.3], dtype=tf.float32)
|
||
|
|
x = tf.placeholder(tf.float32)
|
||
|
|
linear_model = W * x + b
|
||
|
|
|
||
|
|
init = tf.global_variables_initializer()
|
||
|
|
sess.run(init)
|
||
|
|
print(sess.run(linear_model, {x: [1, 2, 3, 4]}))
|
||
|
|
|
||
|
|
y = tf.placeholder(tf.float32)
|
||
|
|
squared_deltas = tf.square(linear_model - y)
|
||
|
|
loss = tf.reduce_sum(squared_deltas)
|
||
|
|
|
||
|
|
print(sess.run(loss, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]}))
|
||
|
|
|
||
|
|
fixW = tf.assign(W, [-1.])
|
||
|
|
fixb = tf.assign(b, [1.])
|
||
|
|
sess.run([fixW, fixb])
|
||
|
|
print(sess.run(loss, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]}))
|
||
|
|
|
||
|
|
optimizer = tf.train.GradientDescentOptimizer(0.01)
|
||
|
|
train = optimizer.minimize(loss)
|
||
|
|
|
||
|
|
sess.run(init) # reset values to incorrect defaults.
|
||
|
|
for i in range(1000):
|
||
|
|
sess.run(train, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]})
|
||
|
|
|
||
|
|
print(sess.run([W, b]))
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
import tensorflow as tf
|
||
|
|
|
||
|
|
# Model parameters
|
||
|
|
W = tf.Variable([.3], dtype=tf.float32)
|
||
|
|
b = tf.Variable([-.3], dtype=tf.float32)
|
||
|
|
# Model input and output
|
||
|
|
x = tf.placeholder(tf.float32)
|
||
|
|
linear_model = W * x + b
|
||
|
|
y = tf.placeholder(tf.float32)
|
||
|
|
|
||
|
|
# loss
|
||
|
|
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
|
||
|
|
# optimizer
|
||
|
|
optimizer = tf.train.GradientDescentOptimizer(0.01)
|
||
|
|
train = optimizer.minimize(loss)
|
||
|
|
|
||
|
|
# training data
|
||
|
|
x_train = [1, 2, 3, 4]
|
||
|
|
y_train = [0, -1, -2, -3]
|
||
|
|
# training loop
|
||
|
|
init = tf.global_variables_initializer()
|
||
|
|
sess = tf.Session()
|
||
|
|
sess.run(init) # reset values to wrong
|
||
|
|
for i in range(1000):
|
||
|
|
sess.run(train, {x: x_train, y: y_train})
|
||
|
|
|
||
|
|
# evaluate training accuracy
|
||
|
|
curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x: x_train, y: y_train})
|
||
|
|
print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
import tensorflow as tf
|
||
|
|
# NumPy is often used to load, manipulate and preprocess data.
|
||
|
|
import numpy as np
|
||
|
|
|
||
|
|
# Declare list of features. We only have one numeric feature. There are many
|
||
|
|
# other types of columns that are more complicated and useful.
|
||
|
|
feature_columns = [tf.feature_column.numeric_column("x", shape=[1])]
|
||
|
|
|
||
|
|
# An estimator is the front end to invoke training (fitting) and evaluation
|
||
|
|
# (inference). There are many predefined types like linear regression,
|
||
|
|
# linear classification, and many neural network classifiers and regressors.
|
||
|
|
# The following code provides an estimator that does linear regression.
|
||
|
|
estimator = tf.estimator.LinearRegressor(feature_columns=feature_columns)
|
||
|
|
|
||
|
|
# TensorFlow provides many helper methods to read and set up data sets.
|
||
|
|
# Here we use two data sets: one for training and one for evaluation
|
||
|
|
# We have to tell the function how many batches
|
||
|
|
# of data (num_epochs) we want and how big each batch should be.
|
||
|
|
x_train = np.array([1., 2., 3., 4.])
|
||
|
|
y_train = np.array([0., -1., -2., -3.])
|
||
|
|
x_eval = np.array([2., 5., 8., 1.])
|
||
|
|
y_eval = np.array([-1.01, -4.1, -7, 0.])
|
||
|
|
input_fn = tf.estimator.inputs.numpy_input_fn(
|
||
|
|
{"x": x_train}, y_train, batch_size=4, num_epochs=None, shuffle=True)
|
||
|
|
train_input_fn = tf.estimator.inputs.numpy_input_fn(
|
||
|
|
{"x": x_train}, y_train, batch_size=4, num_epochs=1000, shuffle=False)
|
||
|
|
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
|
||
|
|
{"x": x_eval}, y_eval, batch_size=4, num_epochs=1000, shuffle=False)
|
||
|
|
|
||
|
|
# We can invoke 1000 training steps by invoking the method and passing the
|
||
|
|
# training data set.
|
||
|
|
estimator.train(input_fn=input_fn, steps=1000)
|
||
|
|
|
||
|
|
# Here we evaluate how well our model did.
|
||
|
|
train_metrics = estimator.evaluate(input_fn=train_input_fn)
|
||
|
|
eval_metrics = estimator.evaluate(input_fn=eval_input_fn)
|
||
|
|
print("train metrics: %r"% train_metrics)
|
||
|
|
print("eval metrics: %r"% eval_metrics)
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
import numpy as np
|
||
|
|
import tensorflow as tf
|
||
|
|
|
||
|
|
# Declare list of features, we only have one real-valued feature
|
||
|
|
def model_fn(features, labels, mode):
|
||
|
|
# Build a linear model and predict values
|
||
|
|
W = tf.get_variable("W", [1], dtype=tf.float64)
|
||
|
|
b = tf.get_variable("b", [1], dtype=tf.float64)
|
||
|
|
y = W * features['x'] + b
|
||
|
|
# Loss sub-graph
|
||
|
|
loss = tf.reduce_sum(tf.square(y - labels))
|
||
|
|
# Training sub-graph
|
||
|
|
global_step = tf.train.get_global_step()
|
||
|
|
optimizer = tf.train.GradientDescentOptimizer(0.01)
|
||
|
|
train = tf.group(optimizer.minimize(loss),
|
||
|
|
tf.assign_add(global_step, 1))
|
||
|
|
# EstimatorSpec connects subgraphs we built to the
|
||
|
|
# appropriate functionality.
|
||
|
|
return tf.estimator.EstimatorSpec(
|
||
|
|
mode=mode,
|
||
|
|
predictions=y,
|
||
|
|
loss=loss,
|
||
|
|
train_op=train)
|
||
|
|
|
||
|
|
estimator = tf.estimator.Estimator(model_fn=model_fn)
|
||
|
|
# define our data sets
|
||
|
|
x_train = np.array([1., 2., 3., 4.])
|
||
|
|
y_train = np.array([0., -1., -2., -3.])
|
||
|
|
x_eval = np.array([2., 5., 8., 1.])
|
||
|
|
y_eval = np.array([-1.01, -4.1, -7, 0.])
|
||
|
|
input_fn = tf.estimator.inputs.numpy_input_fn(
|
||
|
|
{"x": x_train}, y_train, batch_size=4, num_epochs=None, shuffle=True)
|
||
|
|
train_input_fn = tf.estimator.inputs.numpy_input_fn(
|
||
|
|
{"x": x_train}, y_train, batch_size=4, num_epochs=1000, shuffle=False)
|
||
|
|
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
|
||
|
|
{"x": x_eval}, y_eval, batch_size=4, num_epochs=1000, shuffle=False)
|
||
|
|
|
||
|
|
# train
|
||
|
|
estimator.train(input_fn=input_fn, steps=1000)
|
||
|
|
# Here we evaluate how well our model did.
|
||
|
|
train_metrics = estimator.evaluate(input_fn=train_input_fn)
|
||
|
|
eval_metrics = estimator.evaluate(input_fn=eval_input_fn)
|
||
|
|
print("train metrics: %r"% train_metrics)
|
||
|
|
print("eval metrics: %r"% eval_metrics)
|