177 lines
6.0 KiB
Python
177 lines
6.0 KiB
Python
|
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
|
#
|
||
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
|
# you may not use this file except in compliance with the License.
|
||
|
|
# You may obtain a copy of the License at
|
||
|
|
#
|
||
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
#
|
||
|
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
|
# See the License for the specific language governing permissions and
|
||
|
|
# limitations under the License.
|
||
|
|
# ==============================================================================
|
||
|
|
|
||
|
|
"""A deep MNIST classifier using convolutional layers.
|
||
|
|
|
||
|
|
See extensive documentation at
|
||
|
|
https://www.tensorflow.org/get_started/mnist/pros
|
||
|
|
"""
|
||
|
|
# Disable linter warnings to maintain consistency with tutorial.
|
||
|
|
# pylint: disable=invalid-name
|
||
|
|
# pylint: disable=g-bad-import-order
|
||
|
|
|
||
|
|
from __future__ import absolute_import
|
||
|
|
from __future__ import division
|
||
|
|
from __future__ import print_function
|
||
|
|
|
||
|
|
import argparse
|
||
|
|
import sys
|
||
|
|
import tempfile
|
||
|
|
|
||
|
|
from tensorflow.examples.tutorials.mnist import input_data
|
||
|
|
|
||
|
|
import tensorflow as tf
|
||
|
|
|
||
|
|
FLAGS = None
|
||
|
|
|
||
|
|
|
||
|
|
def deepnn(x):
|
||
|
|
"""deepnn builds the graph for a deep net for classifying digits.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
x: an input tensor with the dimensions (N_examples, 784), where 784 is the
|
||
|
|
number of pixels in a standard MNIST image.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with values
|
||
|
|
equal to the logits of classifying the digit into one of 10 classes (the
|
||
|
|
digits 0-9). keep_prob is a scalar placeholder for the probability of
|
||
|
|
dropout.
|
||
|
|
"""
|
||
|
|
# Reshape to use within a convolutional neural net.
|
||
|
|
# Last dimension is for "features" - there is only one here, since images are
|
||
|
|
# grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
|
||
|
|
with tf.name_scope('reshape'):
|
||
|
|
x_image = tf.reshape(x, [-1, 28, 28, 1])
|
||
|
|
|
||
|
|
# First convolutional layer - maps one grayscale image to 32 feature maps.
|
||
|
|
with tf.name_scope('conv1'):
|
||
|
|
W_conv1 = weight_variable([5, 5, 1, 32])
|
||
|
|
b_conv1 = bias_variable([32])
|
||
|
|
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
|
||
|
|
|
||
|
|
# Pooling layer - downsamples by 2X.
|
||
|
|
with tf.name_scope('pool1'):
|
||
|
|
h_pool1 = max_pool_2x2(h_conv1)
|
||
|
|
|
||
|
|
# Second convolutional layer -- maps 32 feature maps to 64.
|
||
|
|
with tf.name_scope('conv2'):
|
||
|
|
W_conv2 = weight_variable([5, 5, 32, 64])
|
||
|
|
b_conv2 = bias_variable([64])
|
||
|
|
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
|
||
|
|
|
||
|
|
# Second pooling layer.
|
||
|
|
with tf.name_scope('pool2'):
|
||
|
|
h_pool2 = max_pool_2x2(h_conv2)
|
||
|
|
|
||
|
|
# Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
|
||
|
|
# is down to 7x7x64 feature maps -- maps this to 1024 features.
|
||
|
|
with tf.name_scope('fc1'):
|
||
|
|
W_fc1 = weight_variable([7 * 7 * 64, 1024])
|
||
|
|
b_fc1 = bias_variable([1024])
|
||
|
|
|
||
|
|
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
|
||
|
|
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
|
||
|
|
|
||
|
|
# Dropout - controls the complexity of the model, prevents co-adaptation of
|
||
|
|
# features.
|
||
|
|
with tf.name_scope('dropout'):
|
||
|
|
keep_prob = tf.placeholder(tf.float32)
|
||
|
|
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
|
||
|
|
|
||
|
|
# Map the 1024 features to 10 classes, one for each digit
|
||
|
|
with tf.name_scope('fc2'):
|
||
|
|
W_fc2 = weight_variable([1024, 10])
|
||
|
|
b_fc2 = bias_variable([10])
|
||
|
|
|
||
|
|
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
|
||
|
|
return y_conv, keep_prob
|
||
|
|
|
||
|
|
|
||
|
|
def conv2d(x, W):
|
||
|
|
"""conv2d returns a 2d convolution layer with full stride."""
|
||
|
|
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
|
||
|
|
|
||
|
|
|
||
|
|
def max_pool_2x2(x):
|
||
|
|
"""max_pool_2x2 downsamples a feature map by 2X."""
|
||
|
|
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
|
||
|
|
strides=[1, 2, 2, 1], padding='SAME')
|
||
|
|
|
||
|
|
|
||
|
|
def weight_variable(shape):
|
||
|
|
"""weight_variable generates a weight variable of a given shape."""
|
||
|
|
initial = tf.truncated_normal(shape, stddev=0.1)
|
||
|
|
return tf.Variable(initial)
|
||
|
|
|
||
|
|
|
||
|
|
def bias_variable(shape):
|
||
|
|
"""bias_variable generates a bias variable of a given shape."""
|
||
|
|
initial = tf.constant(0.1, shape=shape)
|
||
|
|
return tf.Variable(initial)
|
||
|
|
|
||
|
|
|
||
|
|
def main(_):
|
||
|
|
# Import data
|
||
|
|
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
|
||
|
|
|
||
|
|
# Create the model
|
||
|
|
x = tf.placeholder(tf.float32, [None, 784])
|
||
|
|
|
||
|
|
# Define loss and optimizer
|
||
|
|
y_ = tf.placeholder(tf.float32, [None, 10])
|
||
|
|
|
||
|
|
# Build the graph for the deep net
|
||
|
|
y_conv, keep_prob = deepnn(x)
|
||
|
|
|
||
|
|
with tf.name_scope('loss'):
|
||
|
|
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_,
|
||
|
|
logits=y_conv)
|
||
|
|
cross_entropy = tf.reduce_mean(cross_entropy)
|
||
|
|
|
||
|
|
with tf.name_scope('adam_optimizer'):
|
||
|
|
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
|
||
|
|
|
||
|
|
with tf.name_scope('accuracy'):
|
||
|
|
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
|
||
|
|
correct_prediction = tf.cast(correct_prediction, tf.float32)
|
||
|
|
accuracy = tf.reduce_mean(correct_prediction)
|
||
|
|
|
||
|
|
graph_location = tempfile.mkdtemp()
|
||
|
|
print('Saving graph to: %s' % graph_location)
|
||
|
|
train_writer = tf.summary.FileWriter(graph_location)
|
||
|
|
train_writer.add_graph(tf.get_default_graph())
|
||
|
|
|
||
|
|
with tf.Session() as sess:
|
||
|
|
sess.run(tf.global_variables_initializer())
|
||
|
|
for i in range(20000):
|
||
|
|
batch = mnist.train.next_batch(50)
|
||
|
|
if i % 100 == 0:
|
||
|
|
train_accuracy = accuracy.eval(feed_dict={
|
||
|
|
x: batch[0], y_: batch[1], keep_prob: 1.0})
|
||
|
|
print('step %d, training accuracy %g' % (i, train_accuracy))
|
||
|
|
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
|
||
|
|
|
||
|
|
print('test accuracy %g' % accuracy.eval(feed_dict={
|
||
|
|
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
|
||
|
|
|
||
|
|
if __name__ == '__main__':
|
||
|
|
parser = argparse.ArgumentParser()
|
||
|
|
parser.add_argument('--data_dir', type=str,
|
||
|
|
default='/tmp/tensorflow/mnist/input_data',
|
||
|
|
help='Directory for storing input data')
|
||
|
|
FLAGS, unparsed = parser.parse_known_args()
|
||
|
|
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
|